Project description:DNA-protein crosslinks (DPCs) are highly cytotoxic lesions that obstruct essential DNA transactions and whose resolution is critical for cell and organismal fitness. However, the mechanisms by which cells respond to and overcome DPCs remain incompletely understood. Recent studies unveiled a dedicated DPC repair pathway in higher eukaryotes involving the SprT-type metalloprotease SPRTN/DVC1, which proteolytically processes DPCs during DNA replication in a ubiquitin-regulated manner. Here, we show that chemically induced and defined enzymatic DPCs trigger potent chromatin SUMOylation responses targeting the crosslinked proteins and associated factors. Consequently, inhibiting SUMOylation compromises DPC clearance and cellular fitness. We demonstrate that ACRC/GCNA family SprT proteases interact with SUMO and establish important physiological roles of C. elegans GCNA-1 and SUMOylation in promoting germ cell and embryonic survival upon DPC formation. Our findings provide first global insights into signaling responses to DPCs and reveal an evolutionarily conserved function of SUMOylation in facilitating responses to these lesions in metazoans that may complement replication-coupled DPC resolution processes.
Project description:DNA-protein crosslinks (DPCs) are highly cytotoxic lesions that obstruct essential DNA transactions and whose resolution is critical for cell and organismal fitness. However, the mechanisms by which cells respond to and overcome DPCs remain incompletely understood. Recent studies unveiled a dedicated DPC repair pathway in higher eukaryotes involving the SprT-type metalloprotease SPRTN/DVC1, which proteolytically processes DPCs during DNA replication in a ubiquitin-regulated manner. Here, we show that chemically induced and defined enzymatic DPCs trigger potent chromatin SUMOylation responses targeting the crosslinked proteins and associated factors. Consequently, inhibiting SUMOylation compromises DPC clearance and cellular fitness. We demonstrate that ACRC/GCNA family SprT proteases interact with SUMO and establish important physiological roles of Caenorhabditis elegans GCNA-1 and SUMOylation in promoting germ cell and embryonic survival upon DPC formation. Our findings provide first global insights into signaling responses to DPCs and reveal an evolutionarily conserved function of SUMOylation in facilitating responses to these lesions in metazoans that may complement replication-coupled DPC resolution processes.
Project description:Little is known about how human genetic variation affects the responses to environmental stimuli in the context of complex diseases. Experimental and computational approaches were applied to determine the effects of genetic variation on the induction of pathogen-responsive genes in human dendritic cells. We identified 121 common genetic variants associated in cis with variation in expression responses to Escherichia coli lipopolysaccharide, influenza, or interferon-β (IFN-β). We localized and validated causal variants to binding sites of pathogen-activated STAT (signal transducer and activator of transcription) and IRF (IFN-regulatory factor) transcription factors. We also identified a common variant in IRF7 that is associated in trans with type I IFN induction in response to influenza infection. Our results reveal common alleles that explain interindividual variation in pathogen sensing and provide functional annotation for genetic variants that alter susceptibility to inflammatory diseases.
Project description:BackgroundThe contribution of individual subsets of dendritic cells (DCs) to generation of adaptive immunity is central to understanding immune homeostasis and protective immune responses.ObjectiveWe sought to define functions for steady-state skin DCs.MethodsWe present an approach in which we restrict antigen presentation to individual DC subsets in the skin and monitor the effects on endogenous antigen-specific CD4(+) T- and B-cell responses.ResultsPresentation of foreign antigen by Langerhans cells (LC) in the absence of exogenous adjuvant led to a large expansion of T follicular helper (TFH) cells. This was accompanied by B-cell activation, germinal center formation, and protective antibody responses against influenza. The expansion of TFH cells and antibody responses could be elicited by both systemic and topical skin immunization. TFH cell induction was not restricted to LCs and occurred in response to antigen presentation by CD103(+) dermal DCs. CD103(+) DCs, despite inducing similar TFH responses as LCs, were less efficient in induction of germinal center B cells and humoral immune responses. We also found that skin DCs are sufficient to expand CXCR5(+) TFH cells through an IL-6- and IFN-α/β receptor-independent mechanism, but B cells were required for sustained Bcl-6(+) expression.ConclusionsThese data demonstrate that a major unappreciated function of skin DCs is their promotion of TFH cells and humoral immune responses that potentially represent an efficient approach for vaccination.
Project description:Dendritic cells (DCs) appear in higher numbers within the CNS as a consequence of inflammation associated with autoimmune disorders, such as multiple sclerosis, but the contribution of these cells to the outcome of disease is not yet clear. Here, we show that stimulatory or tolerogenic functional states of intracerebral DCs regulate the systemic activation of neuroantigen-specific T cells, the recruitment of these cells into the CNS and the onset and progression of experimental autoimmune encephalomyelitis (EAE). Intracerebral microinjection of stimulatory DCs exacerbated the onset and clinical course of EAE, accompanied with an early T-cell infiltration and a decreased proportion of regulatory FoxP3-expressing cells in the brain. In contrast, the intracerebral microinjection of DCs modified by tumor necrosis factor alpha induced their tolerogenic functional state and delayed or prevented EAE onset. This triggered the generation of interleukin 10 (IL-10)-producing neuroantigen-specific lymphocytes in the periphery and restricted IL-17 production in the CNS. Our findings suggest that DCs are a rate-limiting factor for neuroinflammation.
Project description:Tolerogenic dendritic cells (tolDC) play a central role in regulating immune homeostasis and in promoting peripheral tolerance. These features render tolDC a promising tool for cell-based approaches aimed at inducing tolerance in T-cell mediated diseases and in allogeneic transplantation. We developed a protocol to generate genetically engineered human tolDC overexpressing IL-10 (DCIL-10) by means of a bidirectional lentiviral vector (LV) encoding for IL-10. DCIL-10 promote allo-specific T regulatory type 1 (Tr1) cells, modulate allogeneic CD4+ T cell responses in vitro and in vivo, and are stable in a pro-inflammatory milieu. In the present study, we investigated the ability of DCIL-10 to modulate cytotoxic CD8+ T cell responses. We demonstrate that DCIL-10 reduces allogeneic CD8+ T cell proliferation and activation in primary mixed lymphocyte reactions (MLR). Moreover, long-term stimulation with DCIL-10 induces allo-specific anergic CD8+ T cells without signs of exhaustion. DCIL-10-primed CD8+ T cells display limited cytotoxic activity. These findings indicate that stable over-expression of IL-10 in human DC leads to a population of cells able to modulate cytotoxic allogeneic CD8+ T cell responses, overall indicating that DCIL-10 represent a promising cellular product for clinical applications aimed at inducing tolerance after transplantation.
Project description:The plasticity of dendritic cells (DCs) permits phenotypic modulation ex vivo by gene expression or pharmacologic agents, and these modified DCs can exert therapeutic immunosuppressive effects in vivo through direct interactions with T cells, either inducing T regulatory cells (T(REG)s) or causing anergy. Sphingosine 1-phosphate (S1P) is a sphingolipid and the natural ligand for five G protein-coupled receptors (S1P1, S1P2, S1P3, S1P4, and S1P5), and S1PR agonists reduce kidney ischemia-reperfusion injury (IRI) in mice. S1pr3(-/-)mice are protected from kidney IRI, because DCs do not mature. We tested the therapeutic advantage of S1pr3(-/-) bone marrow-derived dendritic cell (BMDC) transfers in kidney IRI. IRI produced a rise in plasma creatinine (PCr) levels in mice receiving no cells (NCs) and mice pretreated with wild-type (WT) BMDCs. However, S1pr3(-/-) BMDC-pretreated mice were protected from kidney IRI. S1pr3(-/-) BMDC-pretreated mice had significantly higher numbers of splenic T(REG)s compared with NC and WT BMDC-pretreated mice. S1pr3(-/-) BMDCs did not attenuate IRI in splenectomized, Rag-1(-/-), or CD11c(+) DC-depleted mice. Additionally, S1pr3(-/-) BMDC-dependent protection required CD169(+)marginal zone macrophages and the macrophage-derived chemokine CCL22 to increase splenic CD4(+)Foxp3(+) T(REG)s. Pretreatment with S1pr3(-/-) BMDCs also induced T(REG)-dependent protection against IRI in an allogeneic mouse model. In summary, adoptively transferred S1pr3(-/-) BMDCs prevent kidney IRI through interactions within the spleen and expansion of splenic CD4(+)Foxp3(+) T(REG)s. We conclude that genetically induced deficiency of S1pr3 in allogenic BMDCs could serve as a therapeutic approach to prevent IRI-induced AKI.
Project description:Breakdown in immunological tolerance to self-Ags or uncontrolled inflammation results in autoimmune disorders. Dendritic cells (DCs) play an important role in regulating the balance between inflammatory and regulatory responses in the periphery. However, factors in the tissue microenvironment and the signaling networks critical for programming DCs to control chronic inflammation and promote tolerance are unknown. In this study, we show that wnt ligand-mediated activation of β-catenin signaling in DCs is critical for promoting tolerance and limiting neuroinflammation. DC-specific deletion of key upstream (lipoprotein receptor-related protein [LRP]5/6) or downstream (β-catenin) mediators of canonical wnt signaling in mice exacerbated experimental autoimmune encephalomyelitis pathology. Mechanistically, loss of LRP5/6-β-catenin-mediated signaling in DCs led to an increased Th1/Th17 cell differentiation but reduced regulatory T cell response. This was due to increased production of proinflammatory cytokines and decreased production of anti-inflammatory cytokines such as IL-10 and IL-27 by DCs lacking LRP5/6-β-catenin signaling. Consistent with these findings, pharmacological activation of canonical wnt/β-catenin signaling delayed experimental autoimmune encephalomyelitis onset and diminished CNS pathology. Thus, the activation of canonical wnt signaling in DCs limits effector T cell responses and represents a potential therapeutic approach to control autoimmune neuroinflammation.
Project description:Mosquitoes are responsible for the transmission of many clinically important arboviruses that cause significant levels of annual mortality and socioeconomic health burden worldwide. Deciphering the mechanisms by which mosquitoes modulate arbovirus infection is crucial to understand how viral-host interactions promote vector transmission and human disease. SUMOylation is a post-translational modification that leads to the covalent attachment of the Small Ubiquitin-like MOdifier (SUMO) protein to host factors, which in turn can modulate their stability, interaction networks, sub-cellular localisation, and biochemical function. While the SUMOylation pathway is known to play a key role in the regulation of host immune defences to virus infection in humans, the importance of this pathway during arbovirus infection in mosquito vectors, such as Aedes aegypti (Ae. aegypti), remains unknown. Here we characterise the sequence, structure, biochemical properties, and tissue-specific expression profiles of component proteins of the Ae. aegypti SUMOylation pathway. We demonstrate significant biochemical differences between Ae. aegypti and Homo sapiens SUMOylation pathways and identify cell-type specific patterns of SUMO expression in Ae. aegypti tissues known to support arbovirus replication. Importantly, depletion of core SUMOylation effector proteins (SUMO, Ubc9 and PIAS) in Ae. aegypti cells led to enhanced levels of arbovirus replication from three different families; Zika (Flaviviridae), Semliki Forest (Togaviridae), and Bunyamwera (Bunyaviridae) viruses. Our findings identify an important role for mosquito SUMOylation in the cellular restriction of arboviruses that may directly influence vector competence and transmission of clinically important arboviruses.
Project description:Influenza infections induce a rapid, but transient, dendritic cell (DC) migration from the lungs to the lymph nodes (LNs) that is followed by substantial recruitment of DCs into the lungs without subsequent migration to the LNs. Given that peripheral DCs are primarily thought to be involved in the initiation of adaptive immunity after migration into lymphoid tissues, what role these newly lung-recruited DCs play in influenza virus immunity is unclear. In this study, we demonstrate that loss of non-LN migratory pulmonary DC subsets increases mortality, sustains higher viral titers, and impairs pulmonary CD8 T cell responses. Reconstitution of the lungs with pulmonary plasmacytoid DCs, CD8+ DCs, or interstitial DCs restores CD8 T cell responses in a cell contact-, major histocompatability complex I-, and influenza peptide-dependent manner. Thus, after their initial activation in the LN, protective influenza-specific CD8 T cell responses require additional antigen-dependent interactions, specifically with DCs in the lungs.