Project description:Based on our findings that PHD2 is a negative regulator of chondrocyte differentiation and that hypoxia signaling is implicated in the pathogenesis of osteoarthritis, we investigated the consequence of disruption of the Phd2 gene in chondrocytes on the articular cartilage phenotype in mice. Immunohistochemistry detected high expression of PHD2 in the superficial zone (SZ), while PHD3 and HIF-1α (target of PHD2) are mainly expressed in the middle-deep zone (MDZ). Conditional deletion of the Phd2 gene (cKO) in chondrocytes accelerated the transition of progenitors to hypertrophic (differentiating) chondrocytes as revealed by reduced SZ thickness, and increased MDZ thickness, as well as increased chondrocyte hypertrophy. Immunohistochemistry further revealed decreased levels of progenitor markers but increased levels of hypertrophy markers in the articular cartilage of the cKO mice. Treatment of primary articular chondrocytes, in vitro, with IOX2, a specific inhibitor of PHD2, promoted articular chondrocyte differentiation. Knockdown of Hif-1α expression in primary articular chondrocytes using lentiviral vectors containing Hif-1α shRNA resulted in reduced expression levels of Vegf, Glut1, Pgk1, and Col10 compared to control shRNA. We conclude that Phd2 is a key regulator of articular cartilage development that acts by inhibiting the differentiation of articular cartilage progenitors via modulating HIF-1α signaling.
Project description:Although intra-articular corticosteroid injections (IACI) are commonly used for the treatment of knee osteoarthritis (OA), there is controversy regarding possible deleterious effects on joint structure. In this line, this study investigates the effects of IACI on the evolution of knee OA structural changes and pain. Participants for this nested case-control study were from the Osteoarthritis Initiative. Knees of participants who had received an IACI and had magnetic resonance images (MRI) were named cases (n = 93), and each matched with one control (n = 93). Features assessed at the yearly visits and their changes within the follow-up period were from MRI (cartilage volume, meniscal thickness, bone marrow lesions, bone curvature, and synovial effusion size), X-ray (joint space width), and clinical (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC] pain score) data. Participants who received IACI experienced a transient and significantly greater rate of loss of the meniscal thickness (p = 0.006) and joint space width (p = 0.011) in the knee medial compartment in the year they received the injection, compared to controls. No significant effect of the IACI was found on the rate of cartilage loss nor on any other knee structural changes or WOMAC pain post-treatment. In conclusion, a single IACI in knee OA was shown to be safe with no negative impact on structural changes, but there was a transient meniscal thickness reduction, a phenomenon for which the clinical relevance is at present unknown.
Project description:Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading.
Project description:ObjectiveCollagen distribution within articular cartilage (AC) is typically evaluated from histological sections, e.g., using collagen staining and light microscopy (LM). Unfortunately, all techniques based on histological sections are time-consuming, destructive, and without extraordinary effort, limited to two dimensions. This study investigates whether phosphotungstic acid (PTA) and phosphomolybdic acid (PMA), two collagen-specific markers and X-ray absorbers, could (1) produce contrast for AC X-ray imaging or (2) be used to detect collagen distribution within AC.MethodWe labeled equine AC samples with PTA or PMA and imaged them with micro-computed tomography (micro-CT) at pre-defined time points 0, 18, 36, 54, 72, 90, 180, 270 h during staining. The micro-CT image intensity was compared with collagen distributions obtained with a reference technique, i.e., Fourier-transform infrared imaging (FTIRI). The labeling time and contrast agent producing highest association (Pearson correlation, Bland-Altman analysis) between FTIRI collagen distribution and micro-CT -determined PTA distribution was selected for human AC.ResultsBoth, PTA and PMA labeling permitted visualization of AC features using micro-CT in non-calcified cartilage. After labeling the samples for 36 h in PTA, the spatial distribution of X-ray attenuation correlated highly with the collagen distribution determined by FTIRI in both equine (mean ± S.D. of the Pearson correlation coefficients, r = 0.96 ± 0.03, n = 12) and human AC (r = 0.82 ± 0.15, n = 4).ConclusionsPTA-induced X-ray attenuation is a potential marker for non-destructive detection of AC collagen distributions in 3D. This approach opens new possibilities in development of non-destructive 3D histopathological techniques for characterization of OA.
Project description:Photon-counting detector computed tomography (PCD-CT) is a modern spectral imaging technique utilizing photon-counting detectors (PCDs). PCDs detect individual photons and classify them into fixed energy bins, thus enabling energy selective imaging, contrary to energy integrating detectors that detects and sums the total energy from all photons during acquisition. The structure and composition of the articular cartilage cannot be detected with native CT imaging but can be assessed using contrast-enhancement. Spectral imaging allows simultaneous decomposition of multiple contrast agents, which can be used to target and highlight discrete cartilage properties. Here we report, for the first time, the use of PCD-CT to quantify a cationic iodinated CA4+ (targeting proteoglycans) and a non-ionic gadolinium-based gadoteridol (reflecting water content) contrast agents inside human osteochondral tissue (n = 53). We performed PCD-CT scanning at diffusion equilibrium and compared the results against reference data of biomechanical and optical density measurements, and Mankin scoring. PCD-CT enables simultaneous quantification of the two contrast agent concentrations inside cartilage and the results correlate with the structural and functional reference parameters. With improved soft tissue contrast and assessment of proteoglycan and water contents, PCD-CT with the dual contrast agent method is of potential use for the detection and monitoring of osteoarthritis.
Project description:The full-thickness articular cartilage defect (FTAC) is an abnormally severe grade of articular cartilage (AC) injury. An osteochondral autograft transfer (OAT) is the recommended treatment, but the increasing morbidity rate from osteochondral plug harvesting is a limitation. Thus, the 3D-printed bilayer's bioactive-biomaterials scaffold is of major interest. Polylactic acid (PLA) and polycaprolactone (PCL) were blended with hydroxyapatite (HA) for the 3D-printed bone layer of the bilayer's bioactive-biomaterials scaffold (B-BBBS). Meanwhile, the blended PLA/PCL filament was 3D printed and combined with a chitosan (CS)/silk firoin (SF) using a lyophilization technique to fabricate the AC layer of the bilayer's bioactive-biomaterials scaffold (AC-BBBS). Material characterization and mechanical and biological tests were performed. The fabrication process consists of combining the 3D-printed structure (AC-BBBS and B-BBBS) and a lyophilized porous AC-BBBS. The morphology and printing abilities were investigated, and biological tests were performed. Finite element analysis (FEA) was performed to predict the maximum load that the bilayer's bioactive-biomaterials scaffold (BBBS) could carry. The presence of HA and CS/SF in the PLA/PCL structure increased cell proliferation. The FEA predicted the load carrying capacity to be up to 663.2 N. All tests indicated that it is possible for BBBS to be used in tissue engineering for AC and bone regeneration in FTAC treatment.
Project description:IntroductionCutting the cost of manufacturing is important for extending the use of tissue-engineered therapeutic products. The present study aimed to develop a simple method for fabrication of cartilaginous tissues for regenerative therapy, utilizing the phenomenon where human articular chondrocytes grow thickness-wise and spontaneously form three-dimensionally thick tissues.MethodsNormal human articular chondrocytes (NHACs) were cultured with varying concentrations of transforming growth factor beta 1 (TGF-β1) and/or fibroblast growth factor-2 (FGF-2) to optimize the culture condition for thickness-wise growth of chondrocytes. Next, the tissues grown in the optimal condition were subjected to re-differentiation culture in attached and detached states to assess differentiation capacity by evaluating secreted factors, histological analysis, and a gene expression assay.ResultsNHACs grew thickness-wise efficiently in the presence of 1 ng/mL TGF-β1 and 10 ng/mL FGF-2. After two weeks of culture, NHACs grew with 11-fold higher thickness and 16-fold higher cell number compared to cells which were neither treated with TGF-β1 nor with FGF-2. These thickness-wise-grown chondrocytes could be re-differentiated by a differentiation medium according to the increase in melanoma inhibitory activity (MIA) and positive safranin-O staining. Interestingly, the cartilaginous gene expression was considerably different between the attached and detached conditions even in the same culture medium, indicating the necessity of detachment and shrinkage to achieve further differentiation.ConclusionsSpontaneous thickness-wise growth might provide a simple tissue-engineering method for manufacturing cartilaginous 3D tissues.
Project description:BackgroundDynamic Coronary Roadmap (DCR) is a new PCI method that may reduce contrast dose and contrast-associated acute kidney injury (CA-AKI) risk. This paper evaluates DCR-guided PCI versus standard angiography PCI for contrast usage, procedure time, and CA-AKI risk.MethodsOn May 1, 2024, we searched PubMed, Scopus, Embase, Cochrane Library, and clinicaltrials.gov for clinical trials or observational studies comparing DCR-guided PCI to standard angiography PCI. Outcomes were contrast media usage, radiation time, dose-area product, air kerma, radiation dose, post-PCI eGFR, AKI incidence, and procedure success. We used a random-effects model and analyzed outcomes using standardized mean difference (SMD) and odds ratio (OR).ResultsOut of 1679 screened articles, only 5 were eligible, encompassing 941 patients. Findings show DCR-guided PCI significantly reduces contrast volume (SMD = -1.12, 95 % CI: 1.75 to -0.50, p = 0.0004), dose-area product (SMD = -0.71, 95 % CI: 1.25 to -0.17, p = 0.01), air kerma (SMD = -1.62, 95 % CI: 2.70 to -0.54), and radiation time (SMD = -0.75, 95 % CI: 1.32 to -0.18, p = 0.003) compared to standard angiography PCI. Despite lower incidence of acute kidney injury (AKI) in the DCR-guided PCI group, the odds ratio did not show statistical significance. Post-PCI eGFR also did not differ significantly between the two groups. Procedural success rates were similar, both exceeding 99 %.ConclusionsIn this paper, we found that DCR-guided PCI is superior to conventional PCI in terms of contrast medium volume and radiation time. Future randomized controlled trials with larger sample sizes are needed to confirm these findings, especially in patients with kidney disease.
Project description:Little is known regarding radiation effects on adult articular (joint) cartilage, though joint damage has been reported following cancer treatment or occupational exposures. The aim of this study was to determine if radiation can reduce cartilage matrix production, induce cartilage degradation, or interfere with the anabolic effects of IGF-1.Isolated chondrocytes cultured in monolayers and whole explants harvested from ankles of human donors and knees of pigs were irradiated with 2 or 10 Gy ?-rays, with or without IGF-1 stimulation. Proteoglycan synthesis and IGF-1 signaling were examined at Day 1; cartilage degradation throughout the first 96 hours.Human and pig cartilage responded similarly to radiation. Cell viability was unchanged. Basal and IGF-1 stimulated proteoglycan synthesis was reduced following exposure, particularly following 10 Gy. Both doses decreased IGF-induced Akt activation and IGF-1 receptor phosphorylation. Matrix metalloproteinases (ADAMTS5, MMP-1, and MMP-13) and proteoglycans were released into media after 2 and 10 Gy.Radiation induced an active degradation of cartilage, reduced proteoglycan synthesis, and impaired IGF-1 signaling in human and pig chondrocytes. Lowered Akt activation could account for decreased matrix synthesis. Radiation may cause a functional decline of cartilage health in joints after exposure, contributing to arthropathy.