Project description:Mycophenolic acid (MPA, 1) and its derivatives are first-line immunosuppressants used in organ transplantation and for treating autoimmune diseases. Despite chemical synthetic achievements, the biosynthetic formation of a seven-carbon carboxylic acid pharmacophore side chain of 1, especially the processes involving the cleavage of the prenyl side chain between DHMP (4) and DMMPA (5), remains unknown. In this work, we identified a membrane-bound prenyltransferase, PgMpaA, that transfers FPP to 4 to yield FDHMP (6). Compound 6 undergoes the first cleavage step via a new globin-like enzyme PgMpaB to form a cryptic intermediate 12. Heterologous expression of PgMpa genes in Aspergillus nidulans demonstrates that the second cleavage step (from 12 to 5) of 1 is a PgMpa cluster-independent process in vivo. Our results, especially the discovery of the broad tolerance of substrates recognized by PgMpaB, set up a strategy for the formation of "pseudo-isopentenyl" natural products using fungal globin-like enzymes.
Project description:Enzymatic steps from two different biosynthetic pathways were combined in Escherichia coli, directing the synthesis of a new class of biomolecules--ubiquinones with prenyl side chains containing conjugated double bonds. This was achieved by the activity of a C(30) carotenoid desaturase, CrtN, from Staphylococcus aureus, which exhibited an inherent flexibility in substrate recognition compared to other carotenoid desaturases. By utilizing the known plasticity of E. coli's native ubiquinone biosynthesis pathway and the unusual activity of CrtN, modified ubiquinone structures with prenyl side chains containing conjugated double bonds were generated. The side chains of the new structures were confirmed to have different degrees of desaturation by mass spectrometry and nuclear magnetic resonance analysis. In vivo (14)C labeling and in vitro activity studies showed that CrtN desaturates octaprenyl diphosphates but not the ubiquinone compounds directly. Antioxidant properties of conjugated side chain ubiquinones were analyzed in an in vitro beta-carotene-linoleate model system and were found to be higher than the corresponding unmodified ubiquinones. These results demonstrate that by combining pathway steps from different branches of biosynthetic networks, classes of compounds not observed in nature can be synthesized and structural motifs that are functionally important can be combined or enhanced.
Project description:The basic differences between the 20 natural amino acid residues are due to differences in their side-chain structures. This characteristic design of protein building blocks implies that side-chain-side-chain interactions play an important, even dominant role in 3D-structural realization of amino acid codes. Here we present the results of a comparative analysis of the contributions of side-chain-side-chain (s-s) and side-chain-backbone (s-b) interactions to the stabilization of folded protein structures within the framework of the CHARMm molecular data model. Contrary to intuition, our results suggest that side-chain-backbone interactions play the major role in side-chain packing, in stabilizing the folded structures, and in differentiating the folded structures from the unfolded or misfolded structures, while the interactions between side chains have a secondary effect. An additional analysis of electrostatic energies suggests that combinatorial dominance of the interactions between opposite charges makes the electrostatic interactions act as an unspecific folding force that stabilizes not only native structure, but also compact random conformations. This observation is in agreement with experimental findings that, in the denatured state, the charge-charge interactions stabilize more compact conformations. Taking advantage of the dominant role of side-chain-backbone interactions in side-chain packing to reduce the combinatorial problem, we developed a new algorithm, ChiRotor, for rapid prediction of side-chain conformations. We present the results of a validation study of the method based on a set of high resolution X-ray structures.
Project description:The rate with which labile backbone hydrogen atoms in proteins exchange with the solvent has long been used to probe protein interactions in aqueous solutions. Arginine, an essential amino acid found in many interaction interfaces, is capable of an impressive range of interactions via its guanidinium group. The hydrogen exchange rate of the guanidinium hydrogens therefore becomes an important measure to quantify side-chain interactions. Herein we present an NMR method to quantify the hydrogen exchange rates of arginine side-chain 1 Hϵ protons and thus present a method to gauge the strength of arginine side-chain interactions. The method employs 13 C-detection and the one-bond deuterium isotope shift observed for 15 Nϵ to generate two exchanging species in 1 H2 O/2 H2 O mixtures. An application to the protein T4 Lysozyme is shown, where protection factors calculated from the obtained exchange rates correlate well with the interactions observed in the crystal structure. The methodology presented provides an important step towards characterising interactions of arginine side-chains in enzymes, in phase separation, and in protein interaction interfaces in general.
Project description:Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and mutational effects. While algorithms that detect these so-called evolutionary couplings between residues have proven useful for practical applications, less is known about how and why these methods perform so well, and what insights into biological processes can be gained from their application. Evolutionary coupling algorithms are commonly benchmarked by comparison to true structural contacts derived from solved protein structures. However, the methods used to determine true structural contacts are not standardized and different definitions of structural contacts may have important consequences for interpreting the results from evolutionary coupling analyses and understanding their overall utility. Here, we show that evolutionary coupling analyses are significantly more likely to identify structural contacts between side-chain atoms than between backbone atoms. We use both simulations and empirical analyses to highlight that purely backbone-based definitions of true residue-residue contacts (i.e., based on the distance between Cα atoms) may underestimate the accuracy of evolutionary coupling algorithms by as much as 40% and that a commonly used reference point (Cβ atoms) underestimates the accuracy by 10-15%. These findings show that co-evolutionary outcomes differ according to which atoms participate in residue-residue interactions and suggest that accounting for different interaction types may lead to further improvements to contact-prediction methods.
Project description:Oligomeric forms of the Aβ peptide represent the most probable neurotoxic agent in Alzheimer's disease. The dynamic and heterogeneous character of these oligomers makes their structural characterization by classic methods difficult. Native mass spectrometry, when supported by additional gas phase techniques, like ion mobility separation and hydrogen-deuterium exchange (IM-HDX-MS), enable analysis of different oligomers coexisting in the sample and may provide species-specific structural information for each oligomeric form populated in the gas phase. Here, we have combined these three techniques to obtain insight into the structural properties of oligomers of Aβ1-40 and two variants with scrambled sequences. Gas-phase HDX-MS revealed a sequence-specific engagement of the side-chains of residues located at the N-terminal part of the peptide in a network of oligomer-stabilizing interactions. Oligomer-specific interactions were no longer observed in the case of the fully scrambled sequence. Also, the ability to form alternative structures, observed for WT Aβ peptide, was lost upon scrambling. Our data underscore a role for the N-terminal residues in shaping the equilibria of oligomeric forms. Although the peptide lacking the N-terminal 1-16 residues (p3 peptide) is thought to be benign, the role of the N-terminus has not been sufficiently characterized yet. We speculate that the interaction networks revealed here may be crucial for enabling structural transitions necessary to obtain mature parallel cross-β structures from smaller antiparallel oligomers. We provide a hypothetical molecular model of the trajectory that allows a gradual conversion from antiparallel to parallel oligomers without decomposition of oligomers. Oligomer-defining interactions involving the Aβ peptide N-terminus may be important in production of the neurotoxic forms and thus should not be neglected.
Project description:The intrinsic conformational biases of individual amino acids and their interstrand side-chain-side-chain (SC-SC) interactions both contribute to the stability of beta-sheets. The relative magnitudes of these effects have been difficult to assess in the context of folded proteins, where tertiary contacts complicate the quantitative analysis of local effects. We now report the results of such an analysis in a much simpler system, a short, stabilized beta-hairpin structure where intrastrand (conformational) and interstrand (SC-SC) influences can be distinguished in the absence of competing protein tertiary interactions. A comprehensive comparison of all pairwise combinations of 11 N-terminal and 7 C-terminal amino acids within an 8-residue, @-tide-stabilized [in which @ denotes the 1,2-dihydro-3(6H)-pyridinyl unit] beta-hairpin reveals distinct differences between the various pairings and shows that the intrastrand and interstrand effects are of comparable magnitude in contributing to the stability of the folded forms over the unfolded forms.
Project description:The role of hither-to-fore unrecognized long-range hydrogen bonds between main-chain amide hydrogens and polar side chains on the stability of a well-studied (betaalpha)8, TIM barrel protein, the alpha subunit of tryptophan synthase (alphaTS), was probed by mutational analysis. The F19-D46 and I97-D124 hydrogen bonds link the N terminus of a beta-strand with the C terminus of the succeeding antiparallel alpha-helix, and the A103-D130 hydrogen bond links the N terminus of an alpha-helix with the C terminus of the succeeding antiparallel beta-strand, forming clamps for the respective betaalpha or alphabeta hairpins. The individual replacement of these aspartic acid side chains with alanine leads to what appear to be closely related partially folded structures with significantly reduced far-UV CD ellipticity and thermodynamic stability. Comparisons with the effects of eliminating another main-chain-side-chain hydrogen bond, G26-S33, and two electrostatic side-chain-side-chain hydrogen bonds, D38-H92 and D112-H146, all in the same N-terminal folding unit of alphaTS, demonstrated a unique role for the clamp interactions in stabilizing the native barrel conformation. Because neither the asparagine nor glutamic acid variant at position 46 can completely reproduce the spectroscopic, thermodynamic, or kinetic folding properties of aspartic acid, both size and charge are crucial to its unique role in the clamp hydrogen bond. Kinetic studies suggest that the three clamp hydrogen bonds act in concert to stabilize the transition state leading to the fully folded TIM barrel motif.
Project description:Proteins in the molten globule state contain high levels of secondary structure, as well as a rudimentary, nativelike tertiary topology. Thus, the structural similarity between the molten globule and native proteins may have a significant bearing in understanding the protein-folding problem. To explore the nature of side-chain--side-chain interactions in the alpha-lactalbumin (alpha-LA) molten globule, we determined the effective concentration for formation of the 28--111 disulfide bond in 14 double-mutant proteins, each containing two hydrophobic core residues replaced by alanine. We compared our results with those of single-alanine substitutions using the framework of double-mutant cycle analysis and found that, in the majority of cases, the effects of two alanine substitutions are additive. Based on these results, we propose a model of side-chain-side-chain interactions in the alpha-LA molten globule, which takes into consideration the dynamic nature of this partially folded species.