Project description:Photophysical behaviour of a novel trimeric BODIPY rotor with a high extinction coefficient is reported. Steady state and time resolved fluorescence measurements established that the trimer could be used as a viscometer for molecular solvents, membrane-like environments and several cancer cell lines.
Project description:The quantum yield of graphene quantum dots was enhanced by restriction of the rotation and vibration of surface functional groups on the edges of the graphene quantum dots via esterification with benzyl alcohol; this enhancement is crucial for the widespread application of graphene quantum dots in light-harvesting devices and optoelectronics. The obtained graphene quantum dots with highly graphene-stacked structures are understood to participate in π-π interactions with adjacent aromatic rings of the benzylic ester on the edges of the graphene quantum dots, thus impeding the nonradiative recombination process in graphene quantum dots. Furthermore, the crude graphene quantum dots were in a gel-like solid form and showed white luminescence under blue light illumination. Our results show the potential for improving the photophysical properties of nanomaterials, such as the quantum yield and band-gap energy for emission, by controlling the functional groups on the surface of graphene quantum dots through an organic modification approach.
Project description:Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.
Project description:Although, many conventional approaches have been used to measure viscosity of fluids, most methods do not allow non-contact, rapid measurements on small sample volume and have universal applicability to all fluids. Here, we demonstrate a simple yet universal viscometer, as proposed by Stokes more than a century ago, exploiting damping of capillary waves generated electrically and probed optically with sub-nanoscale precision. Using a low electric field local actuation of fluids we generate quasi-monochromatic propagating capillary waves and employ a pair of single-lens based compact interferometers to measure attenuation of capillary waves in real-time. Our setup allows rapid measurement of viscosity of a wide variety of polar, non-polar, transparent, opaque, thin or thick fluids having viscosity values varying over four orders of magnitude from [Formula: see text]. Furthermore, we discuss two additional damping mechanisms for nanomechanical capillary waves caused by bottom friction and top nano-layer appearing in micro-litre droplets. Such self-stabilized droplets when coupled with precision interferometers form interesting microscopic platform for picomechanical optofluidics for fundamental, industrial and medical applications.
Project description:In this study, poly(glycerol-co-diacids) prepolymers were produced using different ratios of glycerol (G), sebacic acid (S), and succinic acid (Su) (molar ratios: GS 1:1, GSSu 1:0.9:0.1, GSSu 1:0.8:0.2, GSSu 1:0.5:0.5, GSSu 1:0.2:0.8, GSSu 1:0.1:0.9, GSu 1:1). All polycondensation reactions were performed at 150 °C until reaching a degree of polymerization of ≈55%, inferred by the water volume collected from a reactor. We concluded that the reaction time is correlated with the ratio of diacids used, that is, the increase in succinic acid is proportional to a decrease in the duration of the reaction. In fact, the reaction of poly(glycerol sebacate) (PGS 1:1) is twice as slow as the reaction of poly(glycerol succinate) (PGSu 1:1). The obtained prepolymers were analyzed by electrospray ionization mass spectrometry (ESI-MS) and 1H and 13C nuclear magnetic resonance (NMR). Besides its catalytic influence in poly(glycerol)/ether bond formation, the presence of succinic acid also contributes to a mass growth of ester oligomers, the formation of cyclic structures, a greater number of oligomers detected, and a difference in mass distribution. When compared with PGS (1:1), and even at lower ratios, the prepolymers produced with succinic acid presented mass peak characteristics of oligomer species with a glycerol unit as its end group in higher abundance. Generally, the most abundant oligomers have molecular weights between 400 and 800 g/mol.
Project description:Intense efforts to detect, diagnose, and analyze the kinetic and structural properties of amyloid fibrils have generated a powerful toolkit of amyloid-specific molecular probes. Since its first description in 1959, the fluorescent dye Thioflavin-T (ThT) has become among the most widely used "gold standards" for selectively staining and identifying amyloid fibrils both in vivo and in vitro. The large enhancement of its fluorescence emission upon binding to fibrils makes ThT a particularly powerful and convenient tool. Despite its widespread use in clinical and basic science applications, the molecular mechanism for the ability of ThT to recognize diverse types of amyloid fibrils and for the dye's characteristic fluorescence has only begun to be elucidated. Here, we review recent progress in the understanding of ThT-fibril interactions at an atomic resolution. These studies have yielded important insights into amyloid structures and the processes of fibril formation, and they also offer guidance for designing the next generation of amyloid assembly diagnostics, inhibitors, and therapeutics.
Project description:Glycerol is a major byproduct of biodiesel production, and enzymes that oxidize this compound have been long sought after. The recently described alcohol oxidase from the white-rot basidiomycete Phanerochaete chrysosporium (PcAOX) was reported to feature very mild activity on glycerol. Here, we describe the comprehensive structural and biochemical characterization of this enzyme. PcAOX was expressed in Escherichia coli in high yields and displayed high thermostability. Steady-state kinetics revealed that PcAOX is highly active toward methanol, ethanol, and 1-propanol ( kcat = 18, 19, and 11 s-1, respectively), but showed very limited activity toward glycerol ( kobs = 0.2 s-1 at 2 M substrate). The crystal structure of the homo-octameric PcAOX was determined at a resolution of 2.6 Å. The catalytic center is a remarkable solvent-inaccessible cavity located at the re side of the flavin cofactor. Its small size explains the observed preference for methanol and ethanol as best substrates. These findings led us to design several cavity-enlarging mutants with significantly improved activity toward glycerol. Among them, the F101S variant had a high kcat value of 3 s-1, retaining a high degree of thermostability. The crystal structure of F101S PcAOX was solved, confirming the site of mutation and the larger substrate-binding pocket. Our data demonstrate that PcAOX is a very promising enzyme for glycerol biotransformation.
Project description:Chemiluminescence (CL) has recently gained attention for CL resonance energy transfer (CRET)-mediated photodynamic therapy of cancer. However, the short duration of the CL signal and low quantum yield of the photosensitizer have limited its translational applications. Here, we report CRET-based nanoparticles (CRET-NPs) to achieve quantum yield-enhanced cancer phototheranostics by reinterpreting the hidden nature of CRET. Owing to reactive oxygen species (ROS)-responsive CO2 generation, CRET-NPs were capable of generating a strong and long-lasting photoacoustic signal in the tumor tissue via thermal expansion-induced vaporization. In addition, the CRET phenomenon of the NPs enhanced ROS quantum yield of photosensitizer through both electron transfer for an oxygen-independent type I photochemical reaction and self-illumination for an oxygen-dependent type II photochemical reaction. Consequently, owing to their high ROS quantum yield, CRET-NPs effectively inhibited tumor growth with complete tumor growth inhibition in 60% of cases, even with a single treatment.
Project description:A symmetrical BODIPY-BODIPY dyad with a diyne linker was prepared in two steps; the lifetime decay of this rotor appeared to correlate with the viscosity of the media, thus making this dyad a suitable small molecule viscometer for molecular solvents. The potential of using the rotor to probe the viscosity of ionic liquids was also investigated.
Project description:Protein detection plays an important role in biological and biomedical sciences. The immunoassay based on fluorescence labeling has good specificity but a high labeling cost. Herein, on the basis of G-triplex molecular beacon (G3MB) and thioflavin T (ThT), we developed a simple and label-free biosensor for protein detection. The biotin and streptavidin were used as model enzymes. In the presence of target streptavidin (SA), the streptavidin hybridized with G3MB-b (biotin-linked-G-triplex molecular beacon) perfectly and formed larger steric hindrance, which hindered the hydrolysis of probes by exonuclease III (Exo III). In the absence of target streptavidin, the exonuclease III successively cleaved the stem of G3MB-b and released the G-rich sequences which self-assembled into a G-triplex and subsequently activated the fluorescence signal of thioflavin T. Compared with the traditional G-quadruplex molecular beacon (G4MB), the G3MB only needed a lower dosage of exonuclease III and a shorter reaction time to reach the optimal detection performance, because the concise sequence of G-triplex was good for the molecular beacon design. Moreover, fluorescence experiment results exhibited that the G3MB-b had good sensitivity and specificity for streptavidin detection. The developed label-free biosensor provides a valuable and general platform for protein detection.