Unknown

Dataset Information

0

Functional analysis reveals driver cooperativity and novel mechanisms in endometrial carcinogenesis.


ABSTRACT: High-risk endometrial cancer has poor prognosis and is increasing in incidence. However, understanding of the molecular mechanisms which drive this disease is limited. We used genetically engineered mouse models (GEMM) to determine the functional consequences of missense and loss of function mutations in Fbxw7, Pten and Tp53, which collectively occur in nearly 90% of high-risk endometrial cancers. We show that Trp53 deletion and missense mutation cause different phenotypes, with the latter a substantially stronger driver of endometrial carcinogenesis. We also show that Fbxw7 missense mutation does not cause endometrial neoplasia on its own, but potently accelerates carcinogenesis caused by Pten loss or Trp53 missense mutation. By transcriptomic analysis, we identify LEF1 signalling as upregulated in Fbxw7/FBXW7-mutant mouse and human endometrial cancers, and in human isogenic cell lines carrying FBXW7 mutation, and validate LEF1 and the additional Wnt pathway effector TCF7L2 as novel FBXW7 substrates. Our study provides new insights into the biology of high-risk endometrial cancer and suggests that targeting LEF1 may be worthy of investigation in this treatment-resistant cancer subgroup.

SUBMITTER: Brown M 

PROVIDER: S-EPMC10565641 | biostudies-literature | 2023 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Functional analysis reveals driver cooperativity and novel mechanisms in endometrial carcinogenesis.

Brown Matthew M   Leon Alicia A   Kedzierska Katarzyna K   Moore Charlotte C   Belnoue-Davis Hayley L HL   Flach Susanne S   Lydon John P JP   DeMayo Francesco J FJ   Lewis Annabelle A   Bosse Tjalling T   Tomlinson Ian I   Church David N DN  

EMBO molecular medicine 20230817 10


High-risk endometrial cancer has poor prognosis and is increasing in incidence. However, understanding of the molecular mechanisms which drive this disease is limited. We used genetically engineered mouse models (GEMM) to determine the functional consequences of missense and loss of function mutations in Fbxw7, Pten and Tp53, which collectively occur in nearly 90% of high-risk endometrial cancers. We show that Trp53 deletion and missense mutation cause different phenotypes, with the latter a sub  ...[more]

Similar Datasets

| S-SCDT-10_15252-EMMM_202217094 | biostudies-other
| S-EPMC3483541 | biostudies-literature
| S-EPMC3058631 | biostudies-literature
| S-EPMC5352317 | biostudies-literature
| S-EPMC7726196 | biostudies-literature
2018-12-01 | GSE112970 | GEO
| EGAS00001000318 | EGA
| S-EPMC7762459 | biostudies-literature
| S-EPMC7979806 | biostudies-literature
| S-EPMC5330503 | biostudies-literature