Project description:Among all glomerular diseases, membranous nephropathy (MN) is perhaps the one in which major progress has been made in recent decades, in both the understanding of the pathogenesis and treatment. Despite the overall significant response rates to these therapies-particularly rituximab and cyclical regimen based on corticosteroids and cyclophosphamide-cumulative experience over the years has shown, however, that 20%-30% of cases may confront resistant disease. Thus, these unmet challenges in the treatment of resistant forms of MN require newer approaches. Several emerging new agents-developed primarily for the treatment of hematological malignancies or rheumatoid diseases-are currently being evaluated in MN. Herein we conducted a narrative review on future therapeutic strategies in the disease. Among the different novel therapies, newer anti-CD20 agents (e.g. obinutuzumab), anti-CD38 (e.g. daratumumab, felzartamab), immunoadsorption or anti-complement therapies (e.g. iptacopan) have gained special attention. In addition, several technologies and innovations developed primarily for cancer (e.g. chimeric antigen receptor T-cell therapy, sweeping antibodies) seem particularly promising. In summary, the future therapeutic landscape in MN seems encouraging and will definitely move the management of this disease towards a more precision-based approach.
Project description:IntroductionPrimary membranous nephropathy (PMN) is uncommon in children. Therefore, data on the clinical course of affected children are scarce. In recent years, several novel antigens have been implicated in the pathogenesis of PMN. However, the histopathologic characteristics of pediatric patients with PMN remain poorly represented in the literature.MethodsWe have retrospectively analyzed the clinical presentation and outcomes data of 21 children with PMN from 3 centers in the United States. In addition, we have identified novel antigens in biopsy specimens from these patients and correlated their presence or absence to clinical outcomes. Finally, we compared the results of the novel antigen staining from our clinical cohort to a validation cohort of 127 biopsy specimens from children with PMN at Arkana Laboratories.ResultsThe data from the 2 cohorts demonstrated similar overall antigen positivity rates of 62% to 63%, with phospholipase A2 receptor (PLA2R) and exostosin 1 (EXT1) being the most commonly found antigens. Results from the clinical cohort showed that overall, the kidney prognosis for children with PMN was good, with 17 of 21 patients entering a complete or partial remission. Children who were positive for PLA2R or EXT1 were significantly more likely to enter remission than those in the antigen negative group.ConclusionApproximately 60% of pediatric membranous cases are positive for a novel antigen on kidney biopsy and the clinical prognosis is generally favorable. More studies are needed to understand the clinical implications of each specific novel antigen.
Project description:Membranous nephropathy (MN), a common pathological type of adult nephrotic syndrome, is an antibody-mediated kidney disease. It is widely accepted now that MN is an immune-related disease that involves the whole immune system. In this study, we analyzed the T-cell receptor beta chain (TCRβ) repertoire of the circulating T lymphocytes of MN patients and healthy controls using high-throughput sequencing. We compared multiple aspects of the TCRβ repertoire, including diversity and the Vβ and Jβ genes between MN patients and healthy controls, and we found that the diversities within the VJ cassette combination in the peripheral blood of MN patients were lower than in the healthy controls. We also found the TCRβ repertoire similarity between pre- and post-therapy could reflect the clinical outcome, and two Vβ genes in pre-therapy had the potential to predict the therapeutic effect. These findings indicated the potential of the TCRβ repertoire as non-invasive biomarkers for the prognosis prediction of MN. The characteristics of circulating T-lymphocyte repertoires shed light on MN detection, treatment, and surveillance.
Project description:An HLA-DR3 association with membranous nephropathy (MN) was described in 1979 and additional evidence for a genetic component to MN was suggested in 1984 in reports of familial MN. In 2009, a pathogenic autoantibody was identified against the phospholipase A2 receptor 1 (PLA2R1). Here we discuss the genetic studies that have proven the association of human leucocyte antigen class II and PLA2R1 variants and disease in MN. The common variants in PLA2R1 form a haplotype that is associated with disease incidence. The combination of the variants in both genes significantly increases the risk of disease by 78.5-fold. There are important genetic ethnic differences in MN. Disease outcome is difficult to predict and attempts to correlate the genetic association to outcome have so far not been helpful in a reproducible manner. The role of genetic variants may not only extend beyond the risk of disease development, but can also help us understand the underlying molecular biology of the PLA2R1 and its resultant pathogenicity. The genetic variants identified thus far have an association with disease and could therefore become useful biomarkers to stratify disease risk, as well as possibly identifying novel drug targets in the near future.
Project description:Membranous nephropathy (MN) is the most common cause of primary nephrotic syndrome among adults. The identification of phospholipase A2 receptor (PLA2R) as target antigen in most patients changed the management of MN dramatically, and provided a rationale for B-cell depleting agents such as rituximab. The efficacy of rituximab in inducing remission has been investigated in several studies, including 3 randomized controlled trials, in which complete and partial remission of proteinuria was achieved in approximately two-thirds of treated patients. Due to its favorable safety profile, rituximab is now considered a first-line treatment option for MN, especially in patients at moderate and high risk of deterioration in kidney function. However, questions remain about how to best use rituximab, including the optimal dosing regimen, a potential need for maintenance therapy, and assessment of long-term safety and efficacy outcomes. In this review, we provide an overview of the current literature and discuss both strengths and limitations of "the new standard."
Project description:BackgroundMolecular characterization of nephropathies may facilitate pathophysiologic insight, development of targeted therapeutics, and transcriptome-based disease classification. Although membranous nephropathy (MN) is a common cause of adult-onset nephrotic syndrome, the molecular pathways of kidney damage in MN require further definition.MethodsWe applied a machine-learning framework to predict diagnosis on the basis of gene expression from the microdissected kidney tissue of participants in the Nephrotic Syndrome Study Network (NEPTUNE) cohort. We sought to identify differentially expressed genes between participants with MN versus those of other glomerulonephropathies across the NEPTUNE and European Renal cDNA Bank (ERCB) cohorts, to find MN-specific gene modules in a kidney-specific functional network, and to identify cell-type specificity of MN-specific genes using single-cell sequencing data from reference nephrectomy tissue.ResultsGlomerular gene expression alone accurately separated participants with MN from those with other nephrotic syndrome etiologies. The top predictive classifier genes from NEPTUNE participants were also differentially expressed in the ERCB participants with MN. We identified a signature of 158 genes that are significantly differentially expressed in MN across both cohorts, finding 120 of these in a validation cohort. This signature is enriched in targets of transcription factor NF-κB. Clustering these MN-specific genes in a kidney-specific functional network uncovered modules with functional enrichments, including in ion transport, cell projection morphogenesis, regulation of adhesion, and wounding response. Expression data from reference nephrectomy tissue indicated 43% of these genes are most highly expressed by podocytes.ConclusionsThese results suggest that, relative to other glomerulonephropathies, MN has a distinctive molecular signature that includes upregulation of many podocyte-expressed genes, provides a molecular snapshot of MN, and facilitates insight into MN's underlying pathophysiology.
Project description:Membranous nephropathy (MN) is an autoimmune disease of the kidney glomerulus and one of the leading causes of nephrotic syndrome. The disease exhibits heterogenous outcomes with approximately 30% of cases progressing to end-stage renal disease. The clinical management of MN has steadily advanced owing to the identification of autoantibodies to the phospholipase A2 receptor (PLA2R) in 2009 and thrombospondin domain-containing 7A (THSD7A) in 2014 on the podocyte surface. Approximately 50-80% and 3-5% of primary MN (PMN) cases are associated with either anti-PLA2R or anti-THSD7A antibodies, respectively. The presence of these autoantibodies is used for MN diagnosis; antibody levels correlate with disease severity and possess significant biomarker values in monitoring disease progression and treatment response. Importantly, both autoantibodies are causative to MN. Additionally, evidence is emerging that NELL-1 is associated with 5-10% of PMN cases that are PLA2R- and THSD7A-negative, which moves us one step closer to mapping out the full spectrum of PMN antigens. Recent developments suggest exostosin 1 (EXT1), EXT2, NELL-1, and contactin 1 (CNTN1) are associated with MN. Genetic factors and other mechanisms are in place to regulate these factors and may contribute to MN pathogenesis. This review will discuss recent developments over the past 5 years.