Project description:In response to cerebral ischemia, activated microglia release excessive inflammatory mediators which contribute to neuronal damage. Therefore, inhibition of microglial over-activation could be a therapeutic strategy to alleviate various microglia-mediated neuroinflammation. This study was aimed to elucidate the anti-inflammatory effects of Scutellarin and Edaravone given either singly, or in combination in activated microglia in rats subjected to middle cerebral artery occlusion (MCAO), and in lipopolysaccharide (LPS)-induced BV-2 microglia. Expression of proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-?), interleukin-1 beta (IL-1?), and inducible nitric oxide synthase (iNOS) was assessed by immunofluorescence staining and Western blot. Reactive oxygen species (ROS) and nitric oxide (NO) levels were determined by flow cytometry and fluorescence microscopy, respectively.In vivo, both Edaravone and Scutellarin markedly reduced the infarct cerebral tissue area with the latter drug being more effective with the dosage used; furthermore, when used in combination the reduction was more substantial. Remarkably, a greater diminution in distribution of activated microglia was observed with the combined drug treatment which also attenuated the immunoexpression of TNF-?, IL-1? and iNOS to a greater extent as compared to the drugs given separately. In vitro, both drugs suppressed upregulated expression of inflammatory cytokines, iNOS, NO and ROS in LPS-induced BV-2 cells. Furthermore, Edaravone and Scutellarin in combination cumulatively diminished the expression levels of the inflammatory mediators being most pronounced for TNF-? as evidenced by Western blot.The results suggest that Edaravone and Scutellarin effectively suppressed the inflammatory responses in activated microglia, with Scutellarin being more efficacious within the dosage range used. Moreover, when both drugs were used in combination, the infarct tissue area was reduced more extensively; also, microglia-mediated inflammatory mediators notably TNF-? expression was decreased cumulatively.
Project description:Scutellarin is a natural flavonoid that has been found to exhibit anti-ischemic effect. However, the effect of scutellarin on hepatic hypoxia/reoxygenation (ischemia-reperfusion (I/R)) injury remains unknown. The aim of the present study was to explore the protective effect of scutellarin on I/R-induced injury in hepatocytes. Our results showed that scutellarin improved cell viability in hepatocytes exposed to hypoxia/reoxygenation (H/R). Scutellarin treatment resulted in decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased superoxide dismutase (SOD) activity in H/R-induced hepatocytes. In addition, scutellarin reduced cell apoptosis in H/R-stimulated hepatocytes, as proved by the decreased apoptotic rate. Moreover, scutellarin significantly up-regulated bcl-2 expression and down-regulated bax expression in hepatocytes exposed to H/R. Furthermore, scutellarin treatment caused significant decrease in Keap1 expression and increase in nuclear Nrf2 expression. Besides, scutellarin induced the mRNA expressions of heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). Inhibition of Nrf2 significantly reversed the protective effects of scutellarin on H/R-stimulated hepatocytes. In conclusion, these findings demonstrated that scutellarin protected hepatocytes from H/R-induced oxidative injury through regulating the Keap1/Nrf2/ARE signaling pathway, indicating a potential relevance of scutellarin in attenuating hepatic I/R injury.
Project description:Berberine (BBR) has a neuroprotective effect against ischemic stroke, but its specific protective mechanism has not been clearly elaborated. This study explored the effect of BBR on the canopy FGF signaling regulator 2 (CNPY2) signaling pathway in the ischemic penumbra of rats. The model of cerebral ischemia-reperfusion injury (CIRI) was established by the thread embolization method, and BBR was gastrically perfused for 48 h or 24 h before operation and 6 h after operation. The rats were randomly divided into four groups: the Sham group, BBR group, CIRI group, and CIRI + BBR group. After 2 h of ischemia, followed by 24 h of reperfusion, we confirmed the neurologic dysfunction and apoptosis induced by CIRI in rats (p < 0.05). In the ischemic penumbra, the expression levels of CNPY2-regulated endoplasmic reticulum stress-induced apoptosis proteins (CNPY2, glucose-regulated protein 78 (GRP78), double-stranded RNA-activated protein kinase-like ER kinase (PERK), C/EBP homologous protein (CHOP), and Caspase-3) were significantly increased, but these levels were decreased after BBR treatment (p < 0.05). To further verify the inhibitory effect of BBR on CIRI-induced neuronal apoptosis, we added an endoplasmic reticulum-specific agonist and a PERK inhibitor to the treatment. BBR was shown to significantly inhibit the expression of apoptotic proteins induced by endoplasmic reticulum stress agonist, while the PERK inhibitor partially reversed the ability of BBR to inhibit apoptotic protein (p < 0.05). These results confirm that berberine may inhibit CIRI-induced neuronal apoptosis by downregulating the CNPY2 signaling pathway, thereby exerting a neuroprotective effect.
Project description:Neonatal hypoxia-ischemia encephalopathy (HIE) refers to a brain injury in term infants that can lead to death or lifelong neurological deficits such as cerebral palsy (CP). The pathogenesis of this disease involves multiple cellular and molecular events, notably a neuroinflammatory response driven partly by microglia, the brain resident macrophages. Treatment options are currently very limited, but stem cell (SC) therapy holds promise, as beneficial outcomes are reported in animal studies and to a lesser degree in human trials. Among putative mechanisms of action, immunomodulation is considered a major contributor to SC associated benefits. The goal of this review is to examine whether microglia is a cellular target of SC-mediated immunomodulation and whether the recruitment of microglia is linked to brain repair. We will first provide an overview on microglial activation in the rodent model of neonatal HI, and highlight its sensitivity to developmental age. Two complementary questions are then addressed: (i) do immune-related treatments impact microglia and provide neuroprotection, (ii) does stem cell treatment modulates microglia? Finally, the immune-related findings in patients enrolled in SC based clinical trials are discussed. Our review points to an impact of SCs on the microglial phenotype, but heterogeneity in experimental designs and methodological limitations hamper our understanding of a potential contribution of microglia to SC associated benefits. Thorough analyses of the microglial phenotype are warranted to better address the relevance of the neuroimmune crosstalk in brain repair and improve or advance the development of SC protocols in humans.
Project description:The complexity of microglia phenotypes and their related functions compels the continuous study of microglia in diseases animal models. We demonstrated that oxygen-glucose deprivation (OGD) induced rapid, time- and space-dependent phenotypic microglia modifications in CA1 stratum pyramidalis (SP) and stratum radiatum (SR) of rat organotypic hippocampal slices as well as the degeneration of pyramidal neurons, especially in the outer layer of SP. Twenty-four h following OGD, many rod microglia formed trains of elongated cells spanning from the SR throughout the CA1, reaching the SP outer layer where they acquired a round-shaped amoeboid phagocytic head and phagocytosed most of the pyknotic, damaged neurons. NIR-laser treatment, known to preserve neuronal viability after OGD, prevented rod microglia formation. In CA3 SP, pyramidal neurons were less damaged, no rod microglia were found. Thirty-six h after OGD, neuronal damage was more pronounced in SP outer and inner layers of CA1, rod microglia cells were no longer detectable, and most microglia were amoeboid/phagocytic. Damaged neurons, more numerous 36 h after OGD, were phagocytosed by amoeboid microglia in both inner and outer layers of CA1. In response to OGD, microglia can acquire different morphofunctional phenotypes which depend on the time after the insult and on the subregion where microglia are located.
Project description:Neonatal cerebral hypoxia-ischemia (HI) is the leading cause of death and disability in newborns with the only current treatment being hypothermia. An increased understanding of the pathways that facilitate tissue repair after HI may aid the development of better treatments. Here, we study the role of lactate receptor HCAR1 in tissue repair after neonatal HI in mice. We show that HCAR1 knockout mice have reduced tissue regeneration compared with wildtype mice. Furthermore, proliferation of neural progenitor cells and glial cells, as well as microglial activation was impaired. Transcriptome analysis showed a strong transcriptional response to HI in the subventricular zone of wildtype mice involving about 7300 genes. In contrast, the HCAR1 knockout mice showed a modest response, involving about 750 genes. Notably, fundamental processes in tissue repair such as cell cycle and innate immunity were dysregulated in HCAR1 knockout. Our data suggest that HCAR1 is a key transcriptional regulator of pathways that promote tissue regeneration after HI.
Project description:Hypoxia and increased extracellular nucleotides are frequently coincident in the brainstem. Extracellular nucleotides are potent modulators of microglial inflammatory gene expression via P2X purinergic receptor activation. Although hypoxia is also known to modulate inflammatory gene expression, little is known about how hypoxia or P2X receptor activation alone affect inflammatory molecule production in brainstem microglia, nor how hypoxia and P2X receptor signaling interact when they occur together. In this study, we investigated the ability of a brief episode of hypoxia (2hrs) in the presence and absence of the non-selective P2X receptor agonist 2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate (BzATP) to promote inflammatory gene expression in brainstem microglia in adult rats. We evaluated inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) mRNA levels in immunomagnetically-isolated brainstem microglia. Whereas iNOS and IL-6 gene expression increased with hypoxia and BzATP alone, TNFα expression was unaffected. Surprisingly, BzATP-induced inflammatory effects are lost after hypoxia, suggesting that hypoxia impairs pro-inflammatory P2X receptor signaling. We also evaluated the expression of key P2X receptors activated by BzATP, namely P2X1, P2X4 and P2X7 receptors. Whereas hypoxia did not alter their expression, BzATP upregulated P2X4 and P2X7 mRNAs; these effects were ablated in hypoxia. Although both P2X4 and P2X7 receptor expression correlated with increased microglial iNOS and IL-6 levels in microglia from normoxic rats, in hypoxia, P2X7 only correlated with IL-6, and P2X4 correlated only with iNOS. In addition, correlations between P2X7 and P2X4 were lost following hypoxia, suggesting that P2X4 and P2X7 receptor signaling differs in normoxia and hypoxia. Together, these data suggest that hypoxia suppresses P2X receptor-induced inflammatory gene expression, indicating a potentially immunosuppressive role of extracellular nucleotides in brainstem microglia following exposure to hypoxia.
Project description:BackgroundChlorogenic acid (CGA) is a polyphenolic compound with antioxidant and anti-inflammatory properties. CGA has been shown to improve neuroinflammation. This study is aimed at elucidating the exact mechanism by which CGA reduces neuroinflammation.MethodsOxygen and glucose deprivation (OGD) was utilized to treat BV2 microglia and HT-22 hippocampal neurons to engineer an in vitro model of hypoxic ischemia reperfusion. The levels of inflammatory factors (IL-1β, IL-6, TNF-α, IL-4, and IL-10) and oxidative stress factors (MDA, SOD, and GSH-PX) in microglia were determined by ELISA kits. The neuron proliferation was assessed by CCK-8 assay, and LDH kit was used to determine LDH release in neurons. The fluorescent dye DCF-DA was employed to measure ROS levels in neurons. Correlation of MIR497HG, miR-29b-3p, and SIRT1/NF-κB in neurons and microglia was determined by qRT-PCR. Expressions of inflammatory proteins (COX2, iNOS), oxidative stress pathways (Nrf2, HO-1), and apoptosis-related proteins (Bcl-2, Bax, caspase3, caspase8, and caspase9) in microglia or neurons were determined by western blot. The interactions between MIR497HG and miR-29b-3p, as well as between miR-29b-3p and SIRT1, were determined by dual luciferase assay and RIP assay.ResultsCGA attenuated OGD-mediated inflammation and oxidative stress in microglia and inhibited microglia-mediated neuronal apoptosis. CGA increased the levels of MIR497HG and SIRT1 and suppressed the levels of miR-29b-3p in BV2 and HT-22 cells. MIR497HG knockdown, miR-29b-3p upregulation, and SIRT1 inhibition inhibited CGA-mediated anti-inflammatory and neuronal protective functions. There is a targeting correlation between MIR497HG, miR-29b-3p, and Sirt1. MIR497HG sponges miR-29b-3p to regulate SIRT1 expression in an indirect manner.ConclusionCGA upregulates MIR497HG to curb miR-29b-3p expression, hence initiating the SIRT1/NF-κB signaling pathway and repressing OGD-elicited inflammation, oxidative stress, and neuron apoptosis.
Project description:Background and purposePrevious studies have demonstrated that angiotensin-converting enzyme (ACE) is involved in brain ischemic injury. In the present study, we investigated whether Scutellarin (Scu) exerts neuroprotective effects by down-regulating the Expression of Angiotensin-Converting Enzyme and AT1 receptor in a rat model of permanent focal cerebral ischemia.MethodsAdult Sprague-Dawley rats were administrated with different dosages of Scu by oral gavage for 7 days and underwent permanent middle cerebral artery occlusion (pMCAO). Blood pressure was measured 7 days after Scu administration and 24 h after pMCAO surgery by using a noninvasive tail cuff method. Cerebral blood flow (CBF) was determined by Laser Doppler perfusion monitor and the neuronal dysfunction was evaluated by analysis of neurological deficits before being sacrificed at 24 h after pMCAO. Histopathological change, cell apoptosis and infarct area were respectively determined by hematoxylin-eosin staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end labeling (TUNEL) analysis and 2,3,5-triphenyltetrazolium chloride staining. Tissue angiotensin II (Ang II) and ACE activity were detected by enzyme-linked immunosorbent assays. The expression levels of ACE, Ang II type 1 receptor (AT1R), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were measured by Western blot and real-time PCR. ACE inhibitory activity of Scu in vitro was detected by the photometric determination.ResultsScu treatment dose-dependently decreased neurological deficit score, infarct area, cell apoptosis and morphological changes induced by pMCAO, which were associated with reductions of ACE and AT1R expression and the levels of Ang II, TNF-α, IL-6, and IL-1β in ischemic brains. Scu has a potent ACE inhibiting activity.ConclusionScu protects brain from acute ischemic injury probably through its inhibitory effect on the ACE/Ang II/AT1 axis, CBF preservation and proinflammation inhibition.
Project description:BACKGROUND:Recent findings describe microglia as modulators of neurogenesis in the subventricular zone (SVZ). SVZ microglia in the adult rat are thought to adopt a neurotrophic phenotype after ischemic stroke. Early postnatal microglia are endogenously activated and may therefore exhibit an increased sensitivity to neonatal hypoxia-ischemia (HI). The goal of this study was to investigate the impact of cortico-striatal HI on the microglial phenotype, function, and gene expression in the early postnatal SVZ. METHODS:Postnatal day (P)7 rats underwent sham or right-hemispheric HI surgery. Microglia in the SVZ, the uninjured cortex, and corpus callosum were immunohistochemically analyzed at P10, P20, and P40. The transcriptome of microdissected SVZ and cortical microglia was analyzed at P10 and P20, and the effect of P10 SVZ microglia on neurosphere generation in vitro was studied. RESULTS:The microglial response to HI was region-specific. In the SVZ, a microglial accumulation, prolonged activation and phagocytosis was noted that was not observed in the cortex and corpus callosum. The transcriptome of SVZ microglia and cortical microglia were distinct, and after HI, SVZ microglia concurrently upregulated pro- and anti-inflammatory as well as neurotrophic genes. In vitro, microglia isolated from the SVZ supported neurosphere generation in a concentration-dependent manner. CONCLUSIONS:Microglia are an inherent cellular component of the early postnatal SVZ and undergo developmental changes that are affected on many aspects by neonatal HI injury. Our results demonstrate that early postnatal SVZ microglia are sensitive to HI injury and display a long-lasting region-specific response including neurotrophic features.