Project description:BackgroundIn ischemic stroke, the function of the cerebral vasculature is impaired. This vascular structure is formed by the so-called neurovascular unit (NVU). A better understanding of the mechanisms involved in NVU dysfunction and recovery may lead to new insights for the development of highly sought therapeutic approaches. To date, there remains an unmet need for complex human in vitro models of the NVU to study ischemic events seen in the human brain.MethodsWe here describe the development of a human NVU on-a-chip model using a platform that allows culture of 40 chips in parallel. The model comprises a perfused vessel of primary human brain endothelial cells in co-culture with induced pluripotent stem cell derived astrocytes and neurons. Ischemic stroke was mimicked using a threefold approach that combines chemical hypoxia, hypoglycemia, and halted perfusion.ResultsImmunofluorescent staining confirmed expression of endothelial adherens and tight junction proteins, as well as astrocytic and neuronal markers. In addition, the model expresses relevant brain endothelial transporters and shows spontaneous neuronal firing. The NVU on-a-chip model demonstrates tight barrier function, evidenced by retention of small molecule sodium fluorescein in its lumen. Exposure to the toxic compound staurosporine disrupted the endothelial barrier, causing reduced transepithelial electrical resistance and increased permeability to sodium fluorescein. Under stroke mimicking conditions, brain endothelial cells showed strongly reduced barrier function (35-fold higher apparent permeability) and 7.3-fold decreased mitochondrial potential. Furthermore, levels of adenosine triphosphate were significantly reduced on both the blood- and the brain side of the model (4.8-fold and 11.7-fold reduction, respectively).ConclusionsThe NVU on-a-chip model presented here can be used for fundamental studies of NVU function in stroke and other neurological diseases and for investigation of potential restorative therapies to fight neurological disorders. Due to the platform's relatively high throughput and compatibility with automation, the model holds potential for drug compound screening.
Project description:Organ-on-a-chip in vitro platforms accurately mimic complex microenvironments offering the ability to recapitulate and dissect mechanisms of physiological and pathological settings, revealing their major importance to develop new therapeutic targets. Bone diseases, such as osteoarthritis, are extremely complex, comprising of the action of inflammatory mediators leading to unbalanced bone homeostasis and de-regulation of sensory innervation and angiogenesis. Although there are models to mimic bone vascularization or innervation, in vitro platforms merging the complexity of bone, vasculature, innervation, and inflammation are missing. Therefore, in this study a microfluidic-based neuro-vascularized bone chip (NVB chip) is proposed to 1) model the mechanistic interactions between innervation and angiogenesis in the inflammatory bone niche, and 2) explore, as a screening tool, novel strategies targeting inflammatory diseases, using a nano-based drug delivery system. It is possible to set the design of the platform and achieve the optimized conditions to address the neurovascular network under inflammation. Moreover, this system is validated by delivering anti-inflammatory drug-loaded nanoparticles to counteract the neuronal growth associated with pain perception. This reliable in vitro tool will allow understanding the bone neurovascular system, enlightening novel mechanisms behind the inflammatory bone diseases, bone destruction, and pain opening new avenues for new therapies discovery.
Project description:The neurovascular unit (NVU), comprising vascular, glial, and neural elements, supports the energetic demands of neural computation, but this aspect of the retina's trilaminar vessel network is poorly understood. Only the innermost vessel layer-the superficial vascular plexus (SVP)-is associated with astrocytes, like brain capillaries, whereas radial Müller glia interact with vessels in the other layers. Using serial electron microscopic reconstructions from mouse and primate retina, we find that Müller processes cover capillaries in a tessellating pattern, mirroring the wrapping of brain capillaries by tiled astrocytic endfeet. Gaps in the Müller sheath, found mainly in the intermediate vascular plexus (IVP), permit diverse neuron types to contact pericytes and the endothelial cells directly. Pericyte somata are a favored target, often at spine-like structures with reduced or absent vascular basement lamina. Focal application of ATP to the vitreal surface evoked Ca2+ signals in Müller sheaths in all three vascular layers. Pharmacological experiments confirmed that Müller sheaths express purinergic receptors that, when activated, trigger intracellular Ca2+ signals that are amplified by inositol triphosphate (IP3)-controlled intracellular Ca2+ stores. When rod photoreceptors die in a mouse model of retinitis pigmentosa (rd10), Müller sheaths dissociate from the deep vascular plexus (DVP) but are largely unchanged within the IVP or SVP. Thus, Müller glia interact with retinal vessels in a laminar, compartmentalized manner: glial sheaths are virtually complete in the SVP but fenestrated in the IVP, permitting direct neurovascular contacts. In the DVP, the glial sheath is only modestly fenestrated and is vulnerable to photoreceptor degeneration.
Project description:The human neurovascular system is a complex network of blood vessels and brain cells that is essential to the proper functioning of the brain. In recent years, researchers have become increasingly interested in the role of this system in developing drugs to treat neuroinflammation. This process is believed to contribute to the development of several neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. While much remains to be learned about the precise mechanisms by which the neurovascular system interacts with the brain and how it can be targeted for therapeutic purposes, this area of research holds great promise for the future of neurology and medicine. Currently, creating neurovascular models begins with animal models, followed by testing on humans in clinical trials. However, the high number of medication failures that pass through animal testing indicates that animal models do not always reflect the outcome of human clinical trials. To overcome the challenges of neurovascular systems and the issues with animal models, we have developed a one-of-a-kind in vitro neurovascular unit-on-a-chip to accurately replicate the in vivo human neurovascular microenvironment. This neuroinflammation-on-a-chip platform has the potential to enhance the current methods of drug development and testing to treat neurodegenerative diseases. By replicating the human neurovascular unit in vitro, a more accurate representation of human physiology can be achieved compared to animal models. The ability to detect pro-inflammatory cytokines in situ and monitor physiological changes, such as barrier function, in real-time can provide an invaluable tool for evaluating the efficacy and safety of drugs. Moreover, using nano-sized graphene oxide for in situ detection of inflammatory responses is an innovative approach that can advance the field of neuroinflammation research. Overall, our developed neuroinflammation-on-a-chip system has the potential to provide a more efficient and effective method for developing drugs for treating neurodegenerative diseases and other central nervous system (CNS) diseases.
Project description:The brain is supplied by an elaborate vascular network that originates extracranially and reaches deep into the brain. The concept of the neurovascular unit provides a useful framework to investigate how neuronal signals regulate nearby microvessels to support the metabolic needs of the brain, but it does not consider the role of larger cerebral arteries and systemic vasoactive signals. Furthermore, the recently emerged molecular heterogeneity of cerebrovascular cells indicates that there is no prototypical neurovascular unit replicated at all levels of the vascular network. Here, we examine the cellular and molecular diversity of the cerebrovascular tree and the relative contribution of systemic and brain-intrinsic factors to neurovascular function. Evidence supports the concept of a 'neurovascular complex' composed of segmentally diverse functional modules that implement coordinated vascular responses to central and peripheral signals to maintain homeostasis of the brain. This concept has major implications for neurovascular regulation in health and disease and for brain imaging.
Project description:This data set is for the article:
Endothelial-neuronal coupling revealed in a decoupled neurovascular unit based Organ-on-Chip approach.
Project description:We aimed to identify astroglial transcripts preferentially translated in the neurovascular unit. The translatome of whole astrocytes extracted following the bacTRAP protocol was compared to a translatome of astrocyte perivascular endfeet.
Project description:Recent studies have clarified many still unknown aspects related to innate immunity and the blood-brain barrier relationship. They have also confirmed the close links between effector immune system cells, such as granulocytes, macrophages, microglia, natural killer cells and mast cells, and barrier functionality. The latter, in turn, is able to influence not only the entry of the cells of the immune system into the nervous tissue, but also their own activation. Interestingly, these two components and their interactions play a role of great importance not only in infectious diseases, but in almost all the pathologies of the central nervous system. In this paper, we review the main aspects in the field of vascular diseases (cerebral ischemia), of primitive and secondary neoplasms of Central Nervous System CNS, of CNS infectious diseases, of most common neurodegenerative diseases, in epilepsy and in demyelinating diseases (multiple sclerosis). Neuroinflammation phenomena are constantly present in all diseases; in every different pathological state, a variety of innate immunity cells responds to specific stimuli, differentiating their action, which can influence the blood-brain barrier permeability. This, in turn, undergoes anatomical and functional modifications, allowing the stabilization or the progression of the pathological processes.
Project description:The therapeutic efficacy of stem cells transplanted into an ischaemic brain depends primarily on the responses of the neurovascular unit. Here, we report the development and applicability of a functional neurovascular unit on a microfluidic chip as a microphysiological model of ischaemic stroke that recapitulates the function of the blood-brain barrier as well as interactions between therapeutic stem cells and host cells (human brain microvascular endothelial cells, pericytes, astrocytes, microglia and neurons). We used the model to track the infiltration of a number of candidate stem cells and to characterize the expression levels of genes associated with post-stroke pathologies. We observed that each type of stem cell showed unique neurorestorative effects, primarily by supporting endogenous recovery rather than through direct cell replacement, and that the recovery of synaptic activities is correlated with the recovery of the structural and functional integrity of the neurovascular unit rather than with the regeneration of neurons.