Project description:Mitochondria are fundamental for metabolic homeostasis in all multicellular eukaryotes. In the nervous system, mitochondria-generated adenosine triphosphate (ATP) is required to establish appropriate electrochemical gradients and reliable synaptic transmission. Notably, several mitochondrial defects have been identified in central nervous system disorders. Membrane leakage and electrolyte imbalances, pro-apoptotic pathway activation, and mitophagy are among the mechanisms implicated in the pathogenesis of neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's disease, as well as ischemic stroke. In this review, we summarize mitochondrial pathways that contribute to disease progression. Further, we discuss pathological states that damaged mitochondria impose on normal nervous system processes and explore new therapeutic approaches to mitochondrial diseases.
Project description:Deregulation of the cholesterol pathway is an anomaly observed in human diseases, many of which have in common neurological involvement and unknown pathogenesis. In this study we have used Mevalonate Kinase Deficiency (MKD) as a disease-model in order to investigate the link between the deregulation of the mevalonate pathway and the consequent neurodegeneration. The blocking of the mevalonate pathway in a neuronal cell line (Daoy), using statins or mevalonate, induced an increase in the expression of the inflammasome gene (NLRP3) and programmed cell death related to mitochondrial dysfunction. The morphology of the mitochondria changed, clearly showing the damage induced by oxidative stress and the decreased membrane potential associated with the alterations of the mitochondrial function. The co-administration of geranylgeraniol (GGOH) reduced the inflammatory marker and the damage of the mitochondria, maintaining its shape and components. Our data allow us to speculate about the mechanism by which isoprenoids are able to rescue the inflammatory marker in neuronal cells, independently from the block of the mevalonate pathway, and about the fact that cell death is mitochondria-related.
Project description:Hypertension is a major determinant of cardiovascular morbidity and mortality and is highly prevalent in the general population. While the relationship between sleep apnea and increased blood pressure has been well documented, less recognized is emerging evidence linking sleep-related movement disorders such as restless legs syndrome/periodic limb movements of sleep and sleep-related bruxism with blood pressure (BP) dysregulation and hypertension. There is also recent literature linking narcolepsy-cataplexy with elevated BP and altered pressor responses, and there are data suggesting abnormal BP control in rapid eye movement sleep behavior disorder. It is thought that neural circulatory mechanisms, sympathetic activation in particular, comprise the predominant mediator underlying elevated BP in these neurological sleep disorders. There is very limited evidence that treating these sleep disorders may be beneficial in lowering BP primarily because this question has received very little attention. In this review, we discuss the potential pathophysiologic mechanisms underlying elevated BP in restless legs syndrome/periodic limb movements of sleep, sleep-related bruxism, narcolepsy-cataplexy, and rapid eye movement sleep behavior disorder. We also examine the relationship between these sleep disorders and elevated BP and the impact of treatment of these conditions on BP control. Last, we discuss gaps in the literature evaluating the associations between these sleep disorders and elevated BP and identify areas for further research.
Project description:BackgroundTubulin is a major substrate of the cytoplasmic class II histone deacetylase HDAC6. Inhibition of HDAC6 results in higher levels of acetylated tubulin and enhanced binding of the motor protein kinesin-1 to tubulin, which promotes transport of cargoes along microtubules. Microtubule-dependent intracellular trafficking may therefore be regulated by modulating the activity of HDAC6. We have shown previously that the neuromodulator serotonin increases mitochondrial movement in hippocampal neurons via the Akt-GSK3beta signaling pathway. Here, we demonstrate a role for HDAC6 in this signaling pathway.Methodology/principal findingsWe found that the presence of tubacin, a specific HDAC6 inhibitor, dramatically enhanced mitochondrial movement in hippocampal neurons, whereas niltubacin, an inactive tubacin analog, had no effect. Compared to control cultures, higher levels of acetylated tubulin were found in neurons treated with tubacin, and more kinesin-1 was associated with mitochondria isolated from these neurons. Inhibition of GSK3beta decreased cytoplasmic deacetylase activity and increased tubulin acetylation, whereas blockade of Akt, which phosphorylates and down-regulates GSK3beta, increased cytoplasmic deacetylase activity and decreased tubulin acetylation. Concordantly, the administration of 5-HT, 8-OH-DPAT (a specific 5-HT1A receptor agonist), or fluoxetine (a 5-HT reuptake inhibitor) increased tubulin acetylation. GSK3beta was found to co-localize with HDAC6 in hippocampal neurons, and inhibition of GSK3beta resulted in decreased binding of antibody to phosphoserine-22, a potential GSK3beta phosphorylation site in HDAC6. GSK3beta may therefore regulate HDAC6 activity by phosphorylation.Conclusions/significanceThis study demonstrates that HDAC6 plays an important role in the modulation of mitochondrial transport. The link between HDAC6 and GSK3beta, established here, has important implications for our understanding of neurodegenerative disorders. In particular, abnormal mitochondrial transport, which has been observed in such disorders as Alzheimer's disease and Parkinson's disease, could result from the misregulation of HDAC6 by GSK3beta. HDAC6 may therefore constitute an attractive target in the treatment of these disorders.
Project description:Mitochondria are dynamic organelles that are essential for cellular metabolism but can be functionally disrupted during pathogen infection. In neurons, mitochondria are transported on microtubules via the molecular motors kinesin-1 and dynein and recruited to energy-requiring regions such as synapses. Previous studies showed that proteins from pseudorabies virus (PRV), an alphaherpesvirus, localize to mitochondria and affect mitochondrial function. We show that PRV and herpes simplex virus type 1 (HSV-1) infection of rodent superior cervical ganglion (SCG) neurons disrupts mitochondrial motility and morphology. During PRV infection, glycoprotein B (gB)-dependent fusion events result in electrical coupling of neurons and increased action potential firing rates. Consequently, intracellular [Ca(2+)] increases and alters mitochondrial dynamics through a mechanism involving the Ca(2+)-sensitive cellular protein Miro and reduced recruitment of kinesin-1 to mitochondria. This disruption in mitochondrial dynamics is required for efficient growth and spread of PRV, indicating that altered mitochondrial transport enhances alphaherpesvirus pathogenesis and infection.
Project description:There is growing recognition that fast mitochondrial transport in neurons is disrupted in multiple neurological diseases and psychiatric disorders. However, a major constraint in identifying novel therapeutics based on mitochondrial transport is that the large-scale analysis of fast transport is time consuming. Here we describe methodologies for the automated analysis of fast mitochondrial transport from data acquired using a robotic microscope. We focused on addressing questions of measurement precision, speed, reliably, workflow ease, statistical processing, and presentation. We used optical flow and particle tracking algorithms, implemented in ImageJ, to measure mitochondrial movement in primary cultured cortical and hippocampal neurons. With it, we are able to generate complete descriptions of movement profiles in an automated fashion of hundreds of thousands of mitochondria with a processing time of approximately one hour. We describe the calibration of the parameters of the tracking algorithms and demonstrate that they are capable of measuring the fast transport of a single mitochondrion. We then show that the methods are capable of reliably measuring the inhibition of fast mitochondria transport induced by the disruption of microtubules with the drug nocodazole in both hippocampal and cortical neurons. This work lays the foundation for future large-scale screens designed to identify compounds that modulate mitochondrial motility.
Project description:The cellular prion protein, encoded by the gene Prnp, has been reported to be a receptor of β-amyloid. Their interaction is mandatory for neurotoxic effects of β-amyloid oligomers. In this study, we aimed to explore whether the cellular prion protein participates in the spreading of α-synuclein. Results demonstrate that Prnp expression is not mandatory for α-synuclein spreading. However, although the pathological spreading of α-synuclein can take place in the absence of Prnp, α-synuclein expanded faster in PrPC-overexpressing mice. In addition, α-synuclein binds strongly on PrPC-expressing cells, suggesting a role in modulating the effect of α-synuclein fibrils.
Project description:Neurological disorders are the leading cause of disability and the second leading cause of death worldwide. In the past 30 years, the absolute numbers of deaths and people with disabilities owing to neurological diseases have risen substantially, particularly in low-income and middle-income countries, and further increases are expected globally as a result of population growth and ageing. This rise in absolute numbers of people affected suggests that advances in prevention and management of major neurological disorders are not sufficiently effective to counter global demographic changes. Urgent measures to reduce this burden are therefore needed. Because resources for health care and research are already overstretched, priorities need to be set to guide policy makers, governments, and funding organisations to develop and implement action plans for prevention, health care, and research to tackle the growing challenge of neurological disorders.
Project description:Previous studies established that the kinesin adaptor proteins, TRAK1 and TRAK2, play an important role in mitochondrial transport in neurons. They link mitochondria to kinesin motor proteins via a TRAK acceptor protein in the mitochondrial outer membrane, the Rho GTPase, Miro. TRAKs also associate with enzyme, O-linked N-acetylglucosamine transferase (OGT), to form a quaternary, mitochondrial trafficking complex. A recent report suggested that TRAK1 preferentially controls mitochondrial transport in axons of hippocampal neurons whereas TRAK2 controls mitochondrial transport in dendrites. However, it is not clear whether the function of any of these proteins is exclusive to axons or dendrites and if their mechanisms of action are conserved between different neuronal populations and also, during maturation. Here, a comparative study was carried out into TRAK-mediated mitochondrial mobility in axons and dendrites of hippocampal and cortical neurons during maturation in vitro using a shRNA gene knockdown approach. It was found that in mature hippocampal and cortical neurons, TRAK1 predominantly mediates axonal mitochondrial transport whereas dendritic transport is mediated via TRAK2. In young, maturing neurons, TRAK1 and TRAK2 contribute similarly in mitochondrial transport in both axons and dendrites in both neuronal types. These findings demonstrate maturation regulation of mitochondrial transport which is conserved between at least two distinct neuronal subtypes.
Project description:ObjectivePathogenic variations in the mitochondrial genome are tightly linked to neurological mitochondrial disorders in children. However, the mutation spectrum of mitochondrial DNA (mtDNA) in the Chinese population remains incomplete. Therefore, the primary objective of our study was to comprehensively characterize pathogenic mtDNA variants in Chinese children with mitochondrial disorders at clinical, molecular, and functional levels.MethodsBetween February 2019 and September 2023, we analyzed pathogenic mtDNA variants in a cohort of over 600 Chinese children suspected of having mitochondrial disorders. Whole-exome sequencing (WES) and whole-mtDNA sequencing were performed on the cohort.ResultsWe identified 54 pathogenic or likely pathogenic mtDNA variants in 227 Chinese children with neurological mitochondrial disorders. Among the eight novel heteroplasmic variants detected in seven patients, in silico analyses suggested likely pathogenic features. Functional analyses using either primary fibroblasts or cybrid cells carrying different mutant loads of mtDNA variants showed impaired mitochondrial respiration, ATP generation, and mitochondrial membrane potential in five of the eight novel variants, including m.4275G>A, m.10407G>A, m.5828G>A, m.3457G>A, and m.13112T>C. The m.8427T>C variant was identified as a rare polymorphism because, despite being located at MT-ATP8, it does not affect both the assembly and activity of mitochondrial complex V in cells carrying homoplasmic m.8427T>C variation. Transcriptome profiling further confirmed the pathogenic contributions of these five variants by altering mitochondrial pathways.ConclusionIn summary, we revisited the mtDNA mutation spectrum in Chinese children with mitochondrial disorders, and identified five novel pathogenic mtDNA variants with functional verification that are related to neurological mitochondrial disorders in children.