Project description:BackgroundIn primates, infection is an important force driving gene evolution, and this is reflected in the importance of infectious disease in human morbidity today. The beta-defensins are key components of the innate immune system, with antimicrobial and cell signalling roles, but also reproductive functions. Here we examine evolution of beta-defensins in catarrhine primates and variation within different human populations.ResultsWe show that five beta-defensin genes that do not show copy number variation in humans show evidence of positive selection in catarrhine primates, and identify specific codons that have been under selective pressure. Direct haplotyping of DEFB127 in humans suggests long-term balancing selection: there are two highly diverged haplotype clades carrying different variants of a codon that, in primates, is positively selected. For DEFB132, we show that extensive diversity, including a four-state amino acid polymorphism (valine, isoleucine, alanine and threonine at position 93), is present in hunter-gatherer populations, both African and non-African, but not found in samples from agricultural populations.ConclusionSome, but not all, beta-defensin genes show positive selection in catarrhine primates. There is suggestive evidence of different selective pressures on these genes in humans, but the nature of the selective pressure remains unclear and is likely to differ between populations.
Project description:AimsTo compare the cervicovaginal levels of human beta defensin (hBD)-1, 2 and 3 of women according to the status of Nugent-defined bacterial vaginosis (BV).MethodsA total of 634 women of reproductive age were included in the study. Participants were equally distributed in two groups: according to the classification of vaginal smears according to Nugent criteria in normal (scores 0 to 3) and BV (scores ≥7). Cervicovaginal fluid samples were used for measurements of hBDs1, 2 and 3 levels by enzyme-linked immunosorbent assay (ELISA). Levels of each hBD were compared between the two study groups using Mann-Whitney test, with p-value <0.05 considered as significant. Odds ratio (OR) and 95% confidence interval (95% CI) were calculated for sociodemographic variables and hBD1-3 levels associated with BV a multivariable analysis. Correlation between Nugent score and measured levels of hBDs1-3 were calculated using Spearman's test.ResultsCervicovaginal fluids from women with BV showed lower levels of hBD-1 [median 2,400.00 pg/mL (0-27,800.00); p<0.0001], hBD-2 [5,600.00 pg/mL (0-45,800.00); p<0.0001] and hBD-3 [1,600.00 pg/mL (0-81,700.00); p = 0.012] when compared to optimal microbiota [hBD-1: [median 3,400.00 pg/mL (0-35,600.00), hBD-2: 12,300.00 pg/mL (0-95,300.00) and hBD-3: 3,000.00 pg/mL (0-64,300.00), respectively]. Multivariable analysis showed that lower levels of hBD-1 (OR: 2.05; 95% CI: 1.46-2.87), hBD-2 (OR: 1.85; 95% CI: 1.32-2.60) and hBD-3 (OR: 1.90; 95% CI: 1.37-2.64) were independently associated BV. Significant negative correlations were observed between Nugent scores and cervicovaginal levels of hBD-1 (Spearman's rho = -0.2118; p = 0.0001) and hBD-2 (*Spearman's rho = -0.2117; p = 0.0001).ConclusionsBacterial vaginosis is associated with lower cervicovaginal levels of hBDs1-3 in reproductive-aged women.
Project description:In the current study, five novel avian ?-defensins (AvBDs) were identified and characterized in tissues from Peking ducks (Anas platyrhynchos). The nucleotide sequences of these cDNAs comprised 198 bp, 182 bp, 201 bp, 204 bp, and 168 bp, and encoded 65, 60, 66, 67, and 55 amino acids, respectively. Homology, characterization and comparison of these genes with AvBD from other avian species confirmed that they were Apl_AvBD1, 3, 5, 6, and 16. Recombinant AvBDs were produced and purified by expressing these genes in Escherichia coli. In addition, peptides were synthesized according to the respective AvBD sequences. Investigation of the antibacterial activity of the Apl_AvBDs showed that all of them exhibited antibacterial activity against all 12 bacteria investigated (P<0.05 or P<0.01). In addition, the antibacterial activity of all of the AvBDs against M. tetragenus and P. multocida decreased significantly in the presence of 150 mM NaCl (P<0.01). None of the AvBDs showed hemolytic activity. Consistent with their broad-spectrum antibacterial activity, the five novel Apl_AvBDs inhibited replication of duck hepatitis virus (DHV) in vitro significantly (P<0.05). The mRNA expression of all five Apl_AvBD in most tissues, including immune organs and the liver, was upregulated in response to DHV infection at different time points. These findings provide evidence that these defensins activate the immune response to combat microbial infection.
Project description:BackgroundBeta-defensins are small cationic peptides that exhibit broad spectrum antimicrobial properties. The majority of beta-defensins identified in humans are predominantly expressed in the male reproductive tract and have roles in non-immunological processes such as sperm maturation and capacitation. Characterization of novel defensins in the male reproductive tract can lead to increased understanding of their dual roles in immunity and sperm maturation.MethodsIn silico rat genomic analyses were used to identify novel beta-defensins related to human defensins 118-123. RNAs isolated from male reproductive tract tissues of rat were reverse transcribed and PCR amplified using gene specific primers for defensins. PCR products were sequenced to confirm their identity. RT-PCR analysis was performed to analyze the tissue distribution, developmental expression and androgen regulation of these defensins. Recombinant defensins were tested against E. coli in a colony forming unit assay to analyze their antimicrobial activities.ResultsNovel beta-defensins, Defb21, Defb24, Defb27, Defb30 and Defb36 were identified in the rat male reproductive tract. Defb30 and Defb36 were the most restricted in expression, whereas the others were expressed in a variety of tissues including the female reproductive tract. Early onset of defensin expression was observed in the epididymides of 10-60 day old rats. Defb21-Defb36 expression in castrated rats was down regulated and maintained at normal levels in testosterone supplemented animals. DEFB24 and DEFB30 proteins showed potent dose and time dependent antibacterial activity.ConclusionRat Defb21, Defb24, Defb27, Defb30 and Defb36 are abundantly expressed in the male reproductive tract where they most likely protect against microbial invasion. They are developmentally regulated and androgen is required for full expression in the adult epididymis.
Project description:The skin produces a plethora of antimicrobial peptides that not only show antimicrobial activities against pathogens but also exhibit various immunomodulatory functions. Human β-defensins (hBDs) are the most well-characterized skin-derived antimicrobial peptides and contribute to diverse biological processes, including cytokine production and the migration, proliferation, and differentiation of host cells. Additionally, hBD-3 was recently reported to promote wound healing and angiogenesis, by inducing the expression of various angiogenic factors and the migration and proliferation of fibroblasts. Angiogenin is one of the most potent angiogenic factors; however, the effects of hBDs on angiogenin production in fibroblasts remain unclear. Here, we investigated the effects of hBDs on the secretion of angiogenin by human dermal fibroblasts. Both in vitro and ex vivo studies demonstrated that hBD-1, hBD-2, hBD-3, and hBD-4 dose-dependently increased angiogenin production by fibroblasts. hBD-mediated angiogenin secretion involved the epidermal growth factor receptor (EGFR), Src family kinase, c-Jun N-terminal kinase (JNK), p38, and nuclear factor-kappa B (NF-κB) pathways, as evidenced by the inhibitory effects of specific inhibitors for these pathways. Indeed, we confirmed that hBDs induced the activation of the EGFR, Src, JNK, p38, and NF-κB pathways. This study identified a novel role of hBDs in angiogenesis, through the production of angiogenin, in addition to their antimicrobial activities and other immunomodulatory properties.
Project description:Human β-defensins (hBDs) are cationic peptides with an amphipathic spatial shape and a high cysteine content. The members of this peptide family have been found in the human body with various functions, including the human reproductive system. Of among β-defensins in the human body, β-defensin 1, β-defensin 2, and β-defensin 126 are known in the human reproductive system. Human β-defensin 1 interacts with chemokine receptor 6 (CCR6) in the male reproductive system to prevent bacterial infections. This peptide has a positive function in antitumor immunity by recruiting dendritic cells and memory T cells in prostate cancer. It is necessary for fertilization via facilitating capacitation and acrosome reaction in the female reproductive system. Human β-defensin 2 is another peptide with antibacterial action which can minimize infection in different parts of the female reproductive system such as the vagina by interacting with CCR6. Human β-defensin 2 could play a role in preventing cervical cancer via interactions with dendritic cells. Human β-defensin 126 is required for sperm motility and protecting the sperm against immune system factors. This study attempted to review the updated knowledge about the roles of β-defensin 1, β-defensin 2, and β-defensin 126 in both the male and female reproductive systems.
Project description:beta-Defensins are cationic peptides with broad-spectrum antimicrobial activity that may play a role in mucosal defenses of several organs. They have been isolated in several species, and in humans, two beta-defensins have been identified. Here, we report the identification of two genes encoding beta-defensin homologues in the rat. Partial cDNAs were found by searching the expressed-sequence-tag database, and primers were designed to generate full-length mRNA coding sequences. One gene was highly similar to the human beta-defensin-1 (HBD-1) gene and mouse beta-defensin-1 gene at both the nucleic acid and amino acid levels and was termed rat beta-defensin-1 (RBD-1). The other gene, named RBD-2, was homologous to the HBD-2 and bovine tracheal antimicrobial peptide (TAP) genes. The predicted prepropeptides were strongly cationic, were 69 and 63 residues in length for RBD-1 and RBD-2, respectively, and contained the six-cysteine motif characteristic of beta-defensins. The beta-defensin genes mapped closely on rat chromosome 16 and were closely linked to the alpha-defensins genes, suggesting that they are part of a gene cluster, similar to the organization reported for humans. Northern blot analysis showed that both RBD-1 and RBD-2 mRNA transcripts were approximately 0.5 kb in length; RBD-1 mRNA was abundantly transcribed in the rat kidney, while RBD-2 was prevalent in the lung. Reverse transcription-PCR indicated that RBD-1 and RBD-2 mRNAs were distributed in a variety of other tissues. In the lung, RBD-1 mRNA expression localized to the tracheal epithelium while RBD-2 was expressed in alveolar type II cells. In conclusion, we characterized two novel beta-defensin homologues in the rat. The rat may be a useful model to investigate the function and contribution of beta-defensins to host defense in the lung, kidney, and other tissues.
Project description:Defensins are short, rapidly evolving, cationic antimicrobial host defence peptides with a repertoire of functions, still incompletely realised, that extends beyond direct microbial killing. They are released or secreted at epithelial surfaces, and in some cases, from immune cells in response to infection and inflammation. Defensins have been described as endogenous alarmins, alerting the body to danger and responding to inflammatory signals by promoting both local innate and adaptive systemic immune responses. However, there is now increasing evidence that they exert variable control on the response to danger; creating a dichotomous response that can suppress inflammation in some circumstances but exacerbate the response to danger and damage in others and, at higher levels, lead to a cytotoxic effect. Focussing in this review on human β-defensins, we discuss the evidence for their functions as proinflammatory, immune activators amplifying the response to infection or damage signals and/or as mediators of resolution of damage, contributing to a return to homeostasis. Finally, we consider their involvement in the development of autoimmune diseases.
Project description:In the HPLC high-resolution ESI-MS profiles of both Predominantly Antibody Deficiency syndromes subjects and healthy controls saliva samples, four proteins, with exp. monoisotopic ion [M+H]+ at 3440.54 ± 0.06 m/z, 3369.50± 0.06 m/z, 3484.51 ± 0.06 m/z and 3707.77 ± 0.06, eluting between 24.5-26.6 minutes, were detected. The monoisotopic mass values and the manual inspection of the high-resolution MS/MS spectra of the ions at [M+5H]+5 at 689.31, 675.10, 698.11 and 742.76 m/z, and of the ions at [M+4H]+4 at 843.63, 872.39 m/z allowed to establish that the four proteins were alpha defensins 1, 2, 3 and 4.
Project description:BackgroundConstitutive expression and localization of antimicrobial human beta-defensin-1 (HBD-1) in human kidneys as a potential mechanism of antimicrobial defense has been previously reported. Inducible expression of human beta-defensin-2 (HBD-2) has been described in various epithelial organs but not for the urogenital tract.MethodsWe investigated the gene- and protein expression of HBD-1 and HBD-2 by reverse transcriptase-polymerase chain reaction, and immunohistochemistry in 15 normal human kidney samples and 15 renal tissues with chronic bacterial infection. Additionally, cell culture experiments were performed to study HBD gene expression by real-time RT-PCR in response to inflammatory cytokines TNFalpha and IL-1beta as well as lipopolysaccharide from Gram-negative bacteria.ResultsConstitutive HBD-1 gene- and protein expression was detected in normal renal tissue and kidneys with chronic infection. As a novel finding, inducible HBD-2 gene- and protein expression was demonstrated in tubulus epithelia with chronic infection but not in normal renal tissue. In pyelonephritic kidneys HBD-1 and HBD-2 expression showed a similar pattern of localization in distal tubules, loops of Henle and in collecting ducts of the kidney. Furthermore, real-time RT-PCR of kidney derived cell lines stimulated with inflammatory agents TNF-alpha, IL-1beta and LPS revealed a strong increase in relative HBD-2 transcription level and also a slight increase in relative HBD-1 transcription level.ConclusionsUpregulated HBD-2 expression in renal tubulus epithelium indicates a role of a wider range of human defensins for antimicrobial host defense in the urogenital tract than previously recognized.