Project description:Titanium dioxide, frequently used in commonplace products, is now regularly detected in aquatic environments. Understanding its toxic effects on native biota is essential. However, combined toxicity with commonly occurring pollutants, such as the pharmaceutical diclofenac, may provide more insight into environmental situations. Therefore, the present study aimed to evaluate the effects of titanium dioxide and diclofenac, individually and combined, on the macrophyte Egeria densa. Diclofenac uptake and removal by the macrophyte were assessed. Diclofenac and titanium dioxide were mixed prior to exposure to allow binding, which was assessed. Toxicity of the individual compounds and the combination was evaluated by assaying enzymes as bioindicators of biotransformation and the antioxidative system. Cytosolic glutathione S-transferase and glutathione reductase activities were increased by diclofenac, titanium dioxide, and the combination. Both enzymes' activities were more significantly elevated by diclofenac and the combination than nanoparticles alone. Microsomal glutathione S-transferase was unaffected by diclofenac exposure but inhibited with titanium dioxide and the mixture. Diclofenac elicited the most significant response. Based on the data, the cytosolic enzymes effectively prevented damage.
Project description:Particle bombardment is a powerful and relatively easy method for transient expression of genes of interest in plant cells, especially those that are recalcitrant to other transformation methods. This method has facilitated numerous analyses of subcellular localization of fluorescent fusion protein constructs. Particle bombardment delivers genes to the first layer of plant tissue. In leaves of higher plants, epidermal cells are the first cell layer. Many studies have used the epidermal cell layer of onion bulb (Allium cepa) as the experimental tissue, because these cells are relatively large. However, onion epidermal cells lack developed plastids (i.e., chloroplasts), thereby precluding subcellular localization analysis of chloroplastic proteins. In this study, we developed a protocol for particle bombardment of the aquatic plant Egeria densa, and showed that it is a useful system for subcellular localization analysis of higher plant proteins. E. densa leaflets contain only two cell layers, and cells in the adaxial layer are sufficiently large for observation. The cells in both layers contain well-developed chloroplasts. We fused fluorescent proteins to conventional plant localization signals for the nucleus, cytosol, mitochondria, peroxisome, and chloroplast, and used particle bombardment to transiently express these fusion constructs in E. densa leaves. The plant subcellular localization signals functioned normally and displayed the expected distributions in transiently transformed E. densa cells, and even chloroplastic structures could be clearly visualized.
Project description:Egeria densa is an often-found invasive species in Japan, which has spread widely in the past two decades in rivers where no macrophytes had previously been found. As a result, these ecosystems have now become dominated by E. densa. The habitat preference for E. densa colony formation was investigated using the tissue concentrations of hydrogen peroxide (H2O2: a reactive oxygen species) under varying conditions in rivers and laboratory conditions. The empirical equations that can describe the macrophyte tissue H2O2 formation under various velocity and light conditions were produced. The H2O2 concentrations of dark-adapted plants are proportional to the flow velocity, and the surplus H2O2 concentration in the light-exposed condition corresponded to the photosystems produced H2O2. When the H2O2 concentration exceeds 16 μmol/gFW, plant tissue starts to deteriorate, and biomass declines, indicating the critical values required for long-term survival of the plant. The empirically obtained relationships between flow velocity or light intensity and the analysis of H2O2 concentration for different slopes and depths of channels found that the H2O2 value exceeds the critical H2O2 concentration in channels with above 1/100 at around 0.6 m depth. This agrees with the observed results where colonies were not found in channels with slopes exceeding 1/100, and biomass concentration was the largest at depths of 0.6 to 0.8 m. H2O2 concentration is quite applicable to understanding the macrophyte condition in various kinds of macrophyte management.
Project description:Biofuels are seen as a potential option for mitigating the effects of fossil fuel use. On the other hand, nutrient pollution is accelerating eutrophication rates in rivers, lakes, and coastal waters. Harvesting aquatic plants to produce biofuels could mitigate this problem, though it is important to attack the problem at source, mainly as regards the contribution of nutrients. For the first time, solid biofuels were obtained in the forms of carbon and pellets from the aquatic plants Egeria densa, which is classed as an invasive plant under the Spanish Catalogue of Exotic Invasive Species, and Lemna minor, both of which can be found in the Umia River in north-west Spain. The essential oils and macro- and microelements present in both these plants were also extracted and analyzed. The higher heating values (HHVs) of the carbon products obtained ranged from 14.28 to 17.25 MJ/kg. The ash content ranged from 22.69% to 49.57%. The maximum yield obtained for biochar for Egeria densa at 200 °C was 66.89%. Temperature significantly affects solid hydrochar yield. The HHVs of the pellets obtained ranged from 11.38 to 13.49 MJ/kg. The use of these species to obtain biofuels through hydrothermal carbonization (HTC) and pellets is a novel and effective approach that will facilitate the removal of nutrients that cause eutrophication in the Umia River. The elements extracted show that harvesting these plants will help to remove excessive nutrients from the ecosystem.
Project description:Leaf tissues of plants usually contain several types of idioblasts, defined as specialized cells whose shape and contents differ from the surrounding homogeneous cells. The spatial patterning of idioblasts, particularly of trichomes and guard cells, across the leaf epidermis has received considerable attention as it offers a useful biological model for studying the intercellular regulation of cell fate and patterning. Excretory idioblasts in the leaves of the aquatic monocotyledonous plant Egeria densa produced light blue autofluorescence when irradiated with ultraviolet light. The use of epifluorescence microscopy to detect this autofluorescence provided a simple and convenient method for detecting excretory idioblasts and allowed tracking of those cells across the leaf surfaces, enabling quantitative measurement of the clustering and spacing patterns of idioblasts at the whole leaf level. Occurrence of idioblasts was coordinated along the proximal-distal, medial-lateral, and adaxial-abaxial axes, producing a recognizable consensus spatial pattern of idioblast formation among fully expanded leaves. Idioblast clusters, which comprised up to nine cells aligned along the proximal-distal axis, showed no positional bias or regularity in idioblast-forming areas when compared with singlet idioblasts. Up to 75% of idioblasts existed as clusters on every leaf side examined. The idioblast-forming areas varied between leaves, implying phenotypic plasticity. Furthermore, in young expanding leaves, autofluorescence was occasionally detected in a single giant vesicle or else in one or more small vesicles, which eventually grew to occupy a large portion of the idioblast volume as a central vacuole. Differentiation of vacuoles by accumulating the fluorescence substance might be an integral part of idioblast differentiation. Red autofluorescence from chloroplasts was not detected in idioblasts of young expanding leaves, suggesting idioblast differentiation involves an arrest in chloroplast development at a very early stage, rather than transdifferentiation of chloroplast-containing epidermal cells.
Project description:Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The use of aquatic macrophytes, such as Azolla with hyper accumulating ability is known to be an environmentally friendly option to restore polluted aquatic resources. The present review highlights the phytoaccumulation potential of macrophytes with emphasis on utilization of Azolla as a promising candidate for phytoremediation. The impact of uptake of heavy metals on morphology and metabolic processes of Azolla has also been discussed for a better understanding and utilization of this symbiotic association in the field of phytoremediation.
Project description:Climate change, especially warming temperatures, may increase invasion and modify the ecological impacts of invasive species by enhancing their ability to compete. To test the effects of warming on invasive plants, a mesocosm experiment was conducted to study competition between the invasive plant Egeria densa and the native hygrophyte Sparganium angustifolium under simulated warming conditions in a greenhouse. These two species were grown in monoculture (no competitor control) or mixed culture (competitor control) for two months under different temperature conditions (warming treatment or no-warming treatment). In S. angustifolium, the higher temperatures led to a shorter root length and significantly increased the aboveground traits of ramets, the total biomass, and the RGR (relative growth rate) but had no effect on the aboveground traits of genets. Growth in mixed culture significantly decreased the S. angustifolium ramet height under warmer conditions and significantly reduced the ramet root length, ramet number, genet biomass, root-to-shoot ratio and RGR of S. angustifolium under natural temperature conditions. All the morphological, biomass and growth traits of E. densa except for the root-to-shoot ratio were significantly increased by the warmer temperatures and decreased by growth in mixed culture. The RCI and RII of E. densa in both the no-warming and warmer environments were two and three times greater than those of S. angustifolium, whereas the ACI values for the two species were similar. Thus, S. angustifolium was a better competitor than E. densa under both temperature conditions. These results suggest that although the superior competitive ability of native species can inhibit E. densa growth, the performance of this species will be enhanced under future climate warming in cold regions.
Project description:The response of aquatic plants to abiotic factors is a crucial study topic, because the diversity of aquatic vegetation is strongly related to specific adaptations to a variety of environments. This biodiversity ensures resilience of aquatic communities to new and changing ecological conditions. In running water, hydrodynamic disturbance is one of the key factors in this context. While plant adaptations to resource stress (nutrients, light…) are well documented, adaptations to mechanical stress, particularly flow, are largely unknown. The submerged species Egeria densa was used in an experiment to detect whether the presence or absence of hydrodynamic stress causes plant thigmomorphogenetic responses (i) in terms of plant biogenic silica (BSi), cellulose and lignin concentrations, and (ii) in terms of plant strength. Plant silica concentrations, as well as lignin concentrations were significantly higher in presence of hydrodynamic stress. These physiological changes are accompanied by some significant changes in stem biomechanical traits: stem resistance to tensile forces (breaking force and breaking strength) and stiffness were higher for plants exposed to hydrodynamic stress. We conclude that the response of this aquatic plant species to mechanical stress is likely the explaining factor for a higher capacity to tolerate stress through the production of mechanically hardened shoots.
Project description:Understanding traits underlying colonization and niche breadth of invasive plants is key to developing sustainable management solutions to curtail invasions at the establishment phase, when efforts are often most effective. The aim of this study was to evaluate how two invasive congeners differing in ploidy respond to high and lowresource availability following establishment from asexual fragments. Because polyploids are expected to have wider niche breadths than diploid ancestors, we predicted that a decaploid species would have superior ability to maximize resource uptake and use, and outperform a diploid congener when colonizing environments with contrasting light and nutrient availability. A mesocosm experiment was designed to test the main and interactive effects of ploidy (diploid and decaploid) and soil nutrient availability (low and high) nested within light environments (shade and sun) of two invasive aquatic plant congeners. Counter to our predictions, the diploid congener outperformed the decaploid in the early stage of growth. Although growth was similar and low in the cytotypes at low nutrient availability, the diploid species had much higher growth rate and biomass accumulation than the polyploid with nutrient enrichment, irrespective of light environment. Our results also revealed extreme differences in time to anthesis between the cytotypes. The rapid growth and earlier flowering of the diploid congener relative to the decaploid congener represent alternate strategies for establishment and success.
Project description:We developed microsatellite primers to investigate genetic diversity and population genetic structure of the cosmopolitan submerged plant Myriophyllum spicatum. • Twenty microsatellite loci were identified in M. spicatum using the microsatellite-enriched library method. The numbers of alleles per locus ranged from one to 13, and the expected heterozygosity varied from 0 to 0.873 with a mean of 0.504 in two Chinese populations of M. spicatum. All of the loci were also found to be amplifiable in the related species M. verticillatum and M. sibiricum. • The results indicate that these markers will be significant for studies of population genetic structure and evolutionary history of M. spicatum as well as some of its related species.