Project description:Nα-Acetyltransferase 60 (Naa60 or NatF) was recently identified as an unconventional N-terminal acetyltransferase (NAT) because it localizes to organelles, in particular the Golgi apparatus, and has a preference for acetylating N termini of the transmembrane proteins. This knowledge challenged the prevailing view of N-terminal acetylation as a co-translational ribosome-associated process and suggested a new mechanistic functioning for the enzymes responsible for this increasingly recognized protein modification. Crystallography studies on Naa60 were unable to resolve the C-terminal tail of Naa60, which is responsible for the organellar localization. Here, we combined modeling, in vitro assays, and cellular localization studies to investigate the secondary structure and membrane interacting capacity of Naa60. The results show that Naa60 is a peripheral membrane protein. Two amphipathic helices within the Naa60 C terminus bind the membrane directly in a parallel position relative to the lipid bilayer via hydrophobic and electrostatic interactions. A peptide corresponding to the C terminus was unstructured in solution and only folded into an α-helical conformation in the presence of liposomes. Computational modeling and cellular mutational analysis revealed the hydrophobic face of two α-helices to be critical for membranous localization. Furthermore, we found a strong and specific binding preference of Naa60 toward membranes containing the phosphatidylinositol PI(4)P, thus possibly explaining the primary residency of Naa60 at the PI(4)P-rich Golgi. In conclusion, we have defined the mode of cytosolic Naa60 anchoring to the Golgi apparatus, most likely occurring post-translationally and specifically facilitating post-translational N-terminal acetylation of many transmembrane proteins.
Project description:Identification of mutations in the tumor suppressor gene TP53 has implications for the molecular epidemiology and for the molecular pathology of human cancer. We have developed and evaluated an arrayed primer extension assay for covering both strands of a region of the coding sequence containing more than 95% of the mutations described so far in TP53. On average, 97.5% of the arrayed TP53 gene sequence can be analyzed from either sense or antisense strands, and 81% from both strands. A patient DNA sample is amplified and annealed to arrayed primers, which then promote DNA polymerase extension reactions with four fluorescently labeled dideoxynucleotides. The TP53 gene chip spans exons 2-9 plus two introns from both strands. The performance of the assay was evaluated by using freshly extracted genomic DNA, as well as DNA extracted from archival (paraffin-embedded) DNA samples. The arrayed primer extension-based TP53 gene test provides an accurate and efficient tool for DNA sequence analysis of this frequently mutated gene for both research and clinical applications.
Project description:Many plasma membrane proteins are anchored to the membrane via a C-terminal glycosylphosphatidylinositol (GPI) moiety. The GPI anchor is attached to the protein in the endoplasmic reticulum by transamidation, a reaction in which a C-terminal GPI-attachment signal is cleaved off concomitantly with addition of the GPI moiety. GPI-attachment signals are poorly conserved on the sequence level but are all composed of a polar segment that includes the GPI-attachment site followed by a hydrophobic segment located at the very C terminus of the protein. Here, we show that efficient GPI modification requires that the hydrophobicity of the C-terminal segment is "marginal": less hydrophobic than type II transmembrane anchors and more hydrophobic than the most hydrophobic segments found in secreted proteins. We further show that the GPI-attachment signal can be modified by the transamidase irrespective of whether it is first released into the lumen of the endoplasmic reticulum or is retained in the endoplasmic reticulum membrane.
Project description:BRCA1, a multi-domain protein, is mutated in a large percentage of hereditary breast and ovarian cancers. BRCA1 is most often mutated in three domains or regions: the N-terminal RING domain, exons 11-13, and the BRCT domain. The BRCA1 RING domain is responsible for the E3 ubiquitin ligase activity of BRCA1 and mediates interactions between BRCA1 and other proteins. BRCA1 ubiquitinates several proteins with various functions. The BRCA1 BRCT domain binds to phosphoproteins with specific sequences recognized by both BRCA1 and ATM/ATR kinases. Structural studies of the RING and BRCT domains have revealed the molecular basis by which cancer causing mutations impact the functions of BRCA1. While no structural data is available for the amino acids encoded by exons 11-13, multiple binding sites and functional domains exist in this region. Many mutations in exons 11-13 have deleterious effects on the function of these domains. In this mini-review, we examine the structure-function relationships of the BRCA1 protein and the relevance to cancer progression.
Project description:Apoptosis is mediated by the caspase family of proteases that act as effectors of cell death by cleaving many cellular substrates. Caspase-2 is one of the most evolutionarily conserved caspases, yet its physiological function has remained enigmatic because caspase-2-deficient mice develop normally and are viable. We report here that the caspase-2(-/-) mouse embryonic fibroblasts (MEFs) show increased proliferation. When transformed with E1A and Ras oncogenes, caspase-2(-/-) MEFs grew significantly faster than caspase-2(+/+) MEFs and formed more aggressive and accelerated tumors in nude mice. To assess whether the loss of caspase-2 predisposes animals to tumor development, we used the mouse Emu-Myc lymphoma model. Our findings suggest that loss of even a single allele of caspase-2 resulted in accelerated tumorigenesis, and this was further enhanced in caspase-2(-/-) mice. The caspase-2(-/-) cells showed resistance to apoptosis induced by chemotherapeutic drugs and DNA damage. Furthermore, caspase-2(-/-) MEFs had a defective apoptotic response to cell-cycle checkpoint regulation and showed abnormal cycling following gamma-irradiation. These data show that loss of caspase-2 results in an increased ability of cells to acquire a transformed phenotype and become malignant, indicating that caspase-2 is a tumor suppressor protein.
Project description:In INF2-a formin linked to inherited renal and neurological disease in humans-the DID is preceded by a short N-terminal extension of unknown structure and function. INF2 activation is achieved by Ca2+-dependent association of calmodulin (CaM). Here, we show that the N-terminal extension of INF2 is organized into two α-helices, the first of which is necessary to maintain the perinuclear F-actin ring and normal cytosolic F-actin content. Biochemical assays indicated that this helix interacts directly with CaM and contains the sole CaM-binding site (CaMBS) detected in INF2. The residues W11, L14 and L18 of INF2, arranged as a 1-4-8 motif, were identified as the most important residues for the binding, W11 being the most critical of the three. This motif is conserved in vertebrate INF2 and in the human population. NMR and biochemical analyses revealed that CaM interacts directly through its C-terminal lobe with the INF2 CaMBS. Unlike control cells, INF2 KO cells lacked the perinuclear F-actin ring, had little cytosolic F-actin content, did not respond to increased Ca2+ concentrations by making more F-actin, and maintained the transcriptional cofactor MRTF predominantly in the cytoplasm. Whereas expression of intact INF2 restored all these defects, INF2 with inactivated CaMBS did not. Our study reveals the structure of the N-terminal extension, its interaction with Ca2+/CaM, and its function in INF2 activation.
Project description:The phosphatidylinositolphosphate phosphatase PTEN is the second most frequently mutated protein in human tumors. Its membrane association, allosteric activation and membrane dissociation are poorly understood. We recently reported PTEN binding affinities to membranes of different compositions (Shenoy et al., 2012, PLoS ONE 7, e32591) and a preliminary investigation of the protein-membrane complex with neutron reflectometry (NR). Here we use NR to validate molecular dynamics (MD) simulations of the protein and study conformational differences of the protein in solution and on anionic membranes. NR shows that full-length PTEN binds to such membranes roughly in the conformation and orientation suggested by the crystal structure of a truncated PTEN protein, in contrast with a recently presented model which suggested that membrane binding depends critically on the SUMOylation of the CBR3 loop of PTEN's C2 domain. Our MD simulations confirm that PTEN is peripherally bound to the bilayer surface and show slight differences of the protein structure in solution and in the membrane-bound state, where the protein body flattens against the bilayer surface. PTEN's C2 domain binds phosphatidylserine (PS) tightly through its CBR3 loop, and its phosphatase domain also forms electrostatic interactions with PS. NR and MD results show consistently that PTEN's unstructured, anionic C-terminal tail is repelled from the bilayer surface. In contrast, this tail is tightly tugged against the C2 domain in solution, partially obstructing the membrane-binding interface of the protein. Arresting the C-terminal tail in this conformation by phosphorylation may provide a control mechanism for PTEN's membrane binding and activity.
Project description:The small viral channel Kcv is a Kir-like K(+) channel of only 94 amino acids. With this simple structure, the tetramer of Kcv represents the pore module of all complex K(+) channels. To examine the structural contribution of the transmembrane domains (TMDs) to channel function, we performed Ala scanning mutagenesis of the two domains and tested the functionality of the mutants in a yeast complementation assay. The data reveal, in combination with computational models, that the upper halves of both TMDs, which face toward the external medium, are rather rigid, whereas the inner parts are more flexible. The rigidity of the outer TMD is conferred by a number of essential aromatic amino acids that face the membrane and probably anchor this domain in the bilayer. The inner TMD is intimately connected with the rigid part of the outer TMD via π···π interactions between a pair of aromatic amino acids. This structural principle is conserved within the viral K(+) channels and also present in Kir2.2, implying a general importance of this architecture for K(+) channel function.
Project description:The retinoblastoma protein (pRB) tumor suppressor blocks cell proliferation by repressing the E2F transcription factors. This inhibition is relieved through mitogen-induced phosphorylation of pRB, triggering E2F release and activation of cell-cycle genes. E2F1 can also activate proapoptotic genes in response to genotoxic or oncogenic stress. However, pRB's role in this context has not been established. Here we show that DNA damage and E1A-induced oncogenic stress promote formation of a pRB-E2F1 complex even in proliferating cells. Moreover, pRB is bound to proapoptotic promoters that are transcriptionally active, and pRB is required for maximal apoptotic response in vitro and in vivo. Together, these data reveal a direct role for pRB in the induction of apoptosis in response to genotoxic or oncogenic stress.
Project description:It is widely accepted that the p53 tumor suppressor restricts abnormal cells by induction of growth arrest or by triggering apoptosis. Here we show that, in addition, p53 protects the genome from oxidation by reactive oxygen species (ROS), a major cause of DNA damage and genetic instability. In the absence of severe stresses, relatively low levels of p53 are sufficient for upregulation of several genes with antioxidant products, which is associated with a decrease in intracellular ROS. Downregulation of p53 results in excessive oxidation of DNA, increased mutation rate and karyotype instability, which are prevented by incubation with the antioxidant N-acetylcysteine (NAC). Dietary supplementation with NAC prevented frequent lymphomas characteristic of Trp53-knockout mice, and slowed the growth of lung cancer xenografts deficient in p53. Our results provide a new paradigm for a nonrestrictive tumor suppressor function of p53 and highlight the potential importance of antioxidants in the prophylaxis and treatment of cancer.