Project description:BackgroundMany countries, including high-income nations, struggled to control epidemic waves caused by the Omicron variant (B.1.1.529), which had an antigenically distinct evolution. Evaluating the direct and indirect effects of vaccination during the Omicron waves is essential to assess virus control policies. The present study assessed the population impacts of a vaccination program during the sixth wave caused by BA.1 and BA.2 from January to May 2022, in Tokyo.MethodsWe analyzed the primary series and booster vaccination coverages and the confirmed cases stratified by vaccination history. We estimated the number of COVID-19 cases that were directly and indirectly prevented by vaccination. To estimate the direct impact, we used a statistical model that compared risks between unvaccinated and vaccinated individuals. A transmission model employing the renewal process was devised to quantify the total effect, given as the sum of the direct and indirect effects.ResultsAssuming that the reporting coverage of cases was 25%, mass vaccination programs, including primary and booster immunizations, directly averted 640,000 COVID-19 cases (95% confidence interval: 624-655). Furthermore, these programs directly and indirectly prevented 8.5 million infections (95% confidence interval: 8.4-8.6). Hypothetical scenarios indicated that we could have expected a 19% or 7% relative reduction in the number of infections, respectively, compared with the observed number of infections, if the booster coverage had been equivalent to that of the second dose or if coverage among people aged 10-49 years had been 10% higher. If the third dose coverage was smaller and comparable to that of the fourth dose, the total number of infections would have increased by 52% compared with the observed number of infections.ConclusionsThe population benefit of vaccination via direct and indirect effects was substantial, with an estimated 65% reduction in the number of SARS-CoV-2 infections compared with counterfactual (without vaccination) in Tokyo during the sixth wave caused by BA.1 and BA.2.
Project description:Ceftriaxone-resistant Neisseria gonorrhoeae FC428-like strains have disseminated across the Asia-Pacific region, with a continuous rise in prevalence during 2015-2022. To mitigate the effect of these strains, we advocate for enhanced molecular diagnostics, expanded surveillance networks, and a regionally coordinated effort to combat the global spread of FC428-like strains.
Project description:BackgroundPulse oximeters are not routinely available in outpatient clinics in low- and middle-income countries. We derived clinical scores to identify hypoxemic child pneumonia.MethodsThis was a retrospective pooled analysis of two outpatient datasets of 3-35 month olds with World Health Organization (WHO)-defined pneumonia in Bangladesh and Malawi. We constructed, internally validated, and compared fit & discrimination of four models predicting SpO2 < 93% and <90%: (1) Integrated Management of Childhood Illness guidelines, (2) WHO-composite guidelines, (3) Independent variable least absolute shrinkage and selection operator (LASSO); (4) Composite variable LASSO.Results12,712 observations were included. The independent and composite LASSO models discriminated moderately (both C-statistic 0.77) between children with a SpO2 < 93% and ≥94%; model predictive capacities remained moderate after adjusting for potential overfitting (C-statistic 0.74 and 0.75). The IMCI and WHO-composite models had poorer discrimination (C-statistic 0.56 and 0.68) and identified 20.6% and 56.8% of SpO2 < 93% cases. The highest score stratum of the independent and composite LASSO models identified 46.7% and 49.0% of SpO2 < 93% cases. Both LASSO models had similar performance for a SpO2 < 90%.ConclusionsIn the absence of pulse oximeters, both LASSO models better identified outpatient hypoxemic pneumonia cases than the WHO guidelines. Score external validation and implementation are needed.
Project description:Compelling evidence has shown that geomagnetic disturbances in vertical intensity polarization before great earthquakes are promising precursors across diverse rupture conditions. However, the geomagnetic vertical intensity polarization method uses the spectrum of smooth signals, and the anomalous waveforms of seismic electromagnetic radiation, which are basically nonstationary, have not been adequately considered. By combining pulse amplitude analysis and an experimental study of the cumulative frequency of anomalies, we found that the pulse amplitudes before the 2022 Luding M6.8 earthquake show characteristics of multiple synchronous anomalies, with the highest (or higher) values occurring during the analyzed period. Similar synchronous anomalies were observed before the 2021 Yangbi M6.4 earthquake, the 2022 Lushan M6.1 earthquake and the 2022 Malcolm M6.0 earthquake, and these anomalies indicate migration from the periphery toward the epicenters over time. The synchronous changes are in line with the recognition of previous geomagnetic anomalies with characteristics of high values before an earthquake and gradual recovery after the earthquake. Our study suggests that the pulse amplitude is effective for extracting anomalies in geomagnetic vertical intensity polarization, especially in the presence of nonstationary signals when utilizing observations from multiple station arrays. Our findings highlight the importance of incorporating pulse amplitude analysis into earthquake prediction research on geomagnetic disturbances.