Project description:Alzheimer's disease (AD) is the most common form of cognitive decline worldwide, occurring in about 10% of people older than 65 years. The well-known hallmarks of AD are extracellular aggregates of amyloid β (Aβ) and intracellular neurofibrillary tangles (NFTs) of tau protein. The evidence that Aβ overproduction leads to AD has paved the way for the AD pathogenesis amyloid cascade hypothesis, which proposes that the neuronal damage is sustained by Aβ overproduction. Consistently, AD cerebrospinal fluid (CSF) biomarkers used in clinical practice, including Aβ 1-42, Aβ 1-40, Aβ 42/40 ratio, and pTau, are related to the amyloid hypothesis. Recently, it was suggested that the Aβ deposition cascade cannot fully disclose AD pathogenesis, with other putative players being involved in the pathophysiology of the disease. Among all, one of the most studied factors is inflammation in the brain. Hence, biomarkers of inflammation and microglia activation have also been proposed to identify AD. Among them, CX3 chemokine ligand 1 (CX3CL1) has taken center stage. This transmembrane protein, also known as fractalkine (FKN), is normally expressed in neurons, featuring an N-terminal chemokine domain and an extended mucin-like stalk, following a short intra-cytoplasmatic domain. The molecule exists in both membrane-bound and soluble forms. It is accepted that the soluble and membrane-bound forms of FKN evoke differential signaling within the CNS. Given the link between CX3XL1 and microglial activation, it has been suggested that CX3CL1 signaling disruption could play a part in the pathogenesis of AD. Furthermore, a role for chemokine as a biomarker has been proposed. However, the findings collected are controversial. The current study aimed to describe the cerebrospinal fluid (CSF) levels of CX3XL1 and classical biomarkers in AD patients.
Project description:Dementia is a leading cause of death worldwide, with increasing prevalence as global life expectancy increases. The most common neurodegenerative disorders are Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). With this study, we took an in-depth look at the proteome of the (non-purified) cerebrospinal fluid (CSF) and the CSF-derived extracellular vesicles (EVs) of AD, PD, PD-MCI (Parkinson's disease with mild cognitive impairment), PDD and DLB patients analysed by label-free mass spectrometry. This has led to the discovery of differentially expressed proteins that may be helpful for differential diagnosis. We observed a greater number of differentially expressed proteins in CSF-derived EV samples (N = 276) compared to non-purified CSF (N = 169), with minimal overlap between both datasets. This finding suggests that CSF-derived EV samples may be more suitable for the discovery phase of a biomarker study, due to the removal of more abundant proteins, resulting in a narrower dynamic range. As disease-specific markers, we selected a total of 39 biomarker candidates identified in non-purified CSF, and 37 biomarker candidates across the different diseases under investigation in the CSF-derived EV data. After further exploration and validation of these proteins, they can be used to further differentiate between the included dementias and may offer new avenues for research into more disease-specific pharmacological therapeutics.
Project description:Alzheimer's disease (AD) is the most common form of age-related dementias. In addition to genetics, environment, and lifestyle, growing evidence supports vascular contributions to dementias including dementia because of AD. Alzheimer's disease affects multiple cell types within the neurovascular unit (NVU), including brain vascular cells (endothelial cells, pericytes, and vascular smooth muscle cells), glial cells (astrocytes and microglia), and neurons. Thus, identifying and integrating biomarkers of the NVU cell-specific responses and injury with established AD biomarkers, amyloid-β (Aβ) and tau, has a potential to contribute to better understanding of the disease process in dementias including AD. Here, we discuss the existing literature on cerebrospinal fluid biomarkers of the NVU cell-specific responses during early stages of dementia and AD. We suggest that the clinical usefulness of established AD biomarkers, Aβ and tau, could be further improved by developing an algorithm that will incorporate biomarkers of the NVU cell-specific responses and injury. Such biomarker algorithm could aid in early detection and intervention as well as identify novel treatment targets to delay disease onset, slow progression, and/or prevent AD.
Project description:BackgroundNeuroinflammatory processes are common in neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), but current knowledge is limited as to whether cerebrospinal fluid (CSF) levels of neuroinflammatory proteins are altered in these diseases.ObjectiveTo identify and characterize neuroinflammatory signatures in CSF from patients with AD, mild cognitive impairment (MCI), and FTD.MethodsWe used proximity extension assay and ANOVA to measure and compare levels of 92 inflammatory proteins in CSF from 42 patients with AD, 29 with MCI due to AD (MCI/AD), 22 with stable MCI, 42 with FTD, and 49 control subjects, correcting for age, gender, collection unit, and multiple testing.ResultsLevels of matrix metalloproteinase-10 (MMP-10) were increased in AD, MCI/AD, and FTD compared with controls (AD: fold change [FC] = 1.32, 95% confidence interval [CI] 1.14-1.53, q = 0.018; MCI/AD: FC = 1.53, 95% CI 1.20-1.94, q = 0.045; and FTD: FC = 1.42, 95% CI 1.10-1.83, q = 0.020). MMP-10 and eleven additional proteins were increased in MCI/AD, compared with MCI (q < 0.05). In FTD, 36 proteins were decreased, while none was decreased in AD or MCI/AD, compared with controls (q < 0.05).ConclusionIn this cross-sectional multi-center study, we found distinct patterns of CSF inflammatory marker levels in FTD and in both early and established AD, suggesting differing neuroinflammatory processes in the two disorders.
Project description:BackgroundThe relationship between cerebrospinal fluid pressure (CSFP) and cognition has received little research attention. The purpose of this study was to explore the relationship between CSFP and cognition in patients with Alzheimer's disease (AD) and patients with Lewy body dementia (LBD).MethodWe included 178 participants, including 137 patients with AD and 41 patients with LBD (including dementia with Lewy bodies (DLBs) and Parkinson's disease dementia (PDD)). CSFP was measured by lumbar puncture, and a patient-reported history and laboratory test data were collected. Logistic and linear regression analyses were used to evaluate the associations between CSFP and cognition, the cerebrospinal fluid (CSF) / serum albumin ratio (Qalb), and CSF biomarkers of AD.ResultsThe mean age of the included patients was 63.58 ± 8.77 years old, and the mean CSFP was 121 ± 33.72 mmH2O. A total of 76.9% of the patients had a CSFP distribution of [90-170) mmH2O, 46 patients (25.8%) had severe dementia, 83 patients (46.6%) had moderate dementia, 28 patients (15.7%) had mild dementia, and 21 patients (11.8%) had mild cognitive impairment (MCI) (including 16 patients with MCI due to AD and 5 patients with MCI due to LBD). In all patients (p value < 0.001) and in patients with AD (p value = 0.01), the mean cerebrospinal fluid pressure (CSFP) was higher in patients with MCI than in patients with dementia. In multivariate analysis, in all patients (OR: 6.37, 95% confidential interval (CI): 1.76-23.04, p = 0.005) and patients with AD (odds ratio (OR): 5.43, 95% CI: 1.41-20.87, p = 0.005), a CSFP in the lowest quartile ([50-90) mmH2O) was associated with a higher level of severe dementia than a CSFP in the highest quartile ([170-210) mmH2O). In addition, there was a significant linear correlation between CSFP and the Mini-Mental State Examination (MMSE) score in all patients with dementia (r = 0.43, p = 0.04, Durbin-Watson test (D-W test) = 0.75).ConclusionIn patients with AD, the mean cerebrospinal fluid pressure was higher in patients with MCI than in patients with dementia, and the decrease in CSFP was related to a more serious dementia level. However, no such relationship was found in patients with LBD.
Project description:IntroductionThe relevance of the cerebrospinal fluid (CSF) biomarkers for the diagnosis of Alzheimer's disease (AD) and related disorders is clearly established. However, the question remains on how to use these data, which are often heterogeneous (not all biomarkers being pathologic). The objective of this study is to propose to physicians in memory clinics a biologic scale of probabilities that the patient with cognitive impairments has an Alzheimer's disease (AD) pathologic process.MethodsFor that purpose, we took advantage of the multicenter data of our Paris-North, Lille, and Montpellier (PLM) study, which has emerged through the initial sharing of information from these memory centers. Different models combining the CSF levels of amyloid-β 42, tau, and p-tau(181) were tested to generate categories of patients with very low (<10%), low (<25%), high (>75%), and very high predictive values (>90%) for positive AD. In total, 1,273 patients (646 AD and 627 non-AD) from six independent memory-clinic cohorts were included.ResultsA prediction model based on logistic regressions achieved a very good stratification of the population but had the disadvantages of needing mathematical optimization and being difficult to use in daily clinical practice. Remarkably, a simple and intuitive model based on the number (from zero to three) of three pathologic CSF biomarkers resulted in a very efficient predictive scale for AD in patients seen in memory clinics. The scale's overall predictive value for AD for the different categories were as follows: class 0, 9.6% (95% confidence interval (CI), 6.0% to 13.2%); class 1, 24.7% (95% CI, 18.0% to 31.3%); class 2, 77.2% (95% CI, 67.8% to 86.5%); and class 3, 94.2% (95% CI, 90.7% to 97.7%). In addition, with this scale, significantly more patients were correctly classified than with the logistic regression. Its superiority in model performance was validated by the computation of the net reclassification index (NRI). The model was also validated in an independent multicenter dataset of 408 patients (213 AD and 195 non-AD).ConclusionsIn conclusion, we defined a new scale that could be used to facilitate the interpretation and routine use of multivariate CSF data, as well as helping the stratification of patients in clinical research trials.
Project description:BackgroundIncreasing evidence suggests that cerebral vascular dysfunction is associated with the early stages of Alzheimer's disease (AD). Vascular endothelial growth factor (VEGF) is one of the key players involved in the development and maintenance of the vasculature. Here, we hypothesized that VEGF levels in cerebrospinal fluid (CSF) may be altered in AD patients with vascular involvement, characterized by the presence of microbleeds (MB), and in vascular dementia (VaD) patients compared to controls.MethodsVEGF levels were determined by electrochemilumiscence Meso Scale Discovery (MULTI-SPOT Assay System) in CSF from age-matched groups of controls with subjective cognitive decline (n = 21), AD without MB (n = 25), AD with MB (n = 25), and VaD (n = 21) patients.ResultsThe average level of VEGF in the different groups was 2.8 ± 1 pg/ml CSF. Adjusted for age and gender, no significant differences were detected between groups (p > 0.5). However, we detected a significant correlation between the concentration of VEGF in the CSF and age (r = 0.22, p = 0.03). In addition, males (n = 54) revealed higher VEGF levels in their CSF compared to females (n = 38) (males = 3.08 ± 0.769 pg/ml (mean ± SD), females = 2.6 ± 0.59; p = 0.006), indicating a gender-related regulation.ConclusionOur study suggests that VEGF levels in the CSF do not reflect the cerebral vascular alterations in either AD or VaD patients. The observed associations of VEGF with age and gender may indicate that VEGF reflects normal aging and that males and females may differ in their aging process.
Project description:BackgroundATP-binding cassette transporter A7 (ABCA7) rs3764650 has been identified to be a susceptibility locus for Alzheimer's disease (AD), but its role in cerebrospinal fluid (CSF) proteins was still unclear.MethodsThe associations of rs3764650 with CSF Aβ1-42, t-tau and p-tau were analyzed in non-dementia AD, including preclinical and prodromal AD from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort.ResultsFinally, GG + GT genotypes significantly decreased CSF Aβ1-42 level, but did not alter CSF t-tau and p-tau levels in non-dementia AD at baseline, which was further confirmed in longitudinal studies.ConclusionsOur findings supported that ABCA7 modified AD risk by altering Aβ deposition rather than tau pathology.
Project description:Alzheimer's disease (AD) is heterogenous at the molecular level. Understanding this heterogeneity is critical for AD drug development. Here we define AD molecular subtypes using mass spectrometry proteomics in cerebrospinal fluid, based on 1,058 proteins, with different levels in individuals with AD (n = 419) compared to controls (n = 187). These AD subtypes had alterations in protein levels that were associated with distinct molecular processes: subtype 1 was characterized by proteins related to neuronal hyperplasticity; subtype 2 by innate immune activation; subtype 3 by RNA dysregulation; subtype 4 by choroid plexus dysfunction; and subtype 5 by blood-brain barrier impairment. Each subtype was related to specific AD genetic risk variants, for example, subtype 1 was enriched with TREM2 R47H. Subtypes also differed in clinical outcomes, survival times and anatomical patterns of brain atrophy. These results indicate molecular heterogeneity in AD and highlight the need for personalized medicine.
Project description:BackgroundClinical diagnosis of parkinsonian syndromes like Parkinson's disease (PD), corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) is hampered by overlapping symptomatology and lack of diagnostic biomarkers, and definitive diagnosis is only possible post-mortem.ObjectiveSince impaired protein degradation plays an important role in many neurodegenerative disorders, we hypothesized that profiles of select lysosomal network proteins in cerebrospinal fluid could be differentially expressed in these parkinsonian syndromes.MethodsCerebrospinal fluid samples were collected from PD patients (n = 18), clinically diagnosed 4-repeat tauopathy patients; corticobasal syndrome (CBS) (n = 3) and PSP (n = 8); and pathologically diagnosed PSP (n = 8) and CBD patients (n = 7). Each patient set was compared to its appropriate control group consisting of age and gender matched individuals. Select lysosomal network protein levels were detected via Western blotting. Factor analysis was used to test the diagnostic sensitivity, specificity and accuracy of the select lysosomal network protein expression profiles.ResultsPD, CBD and PSP were markedly different in their cerebrospinal fluid lysosomal network protein profiles. Lysosomal-associated membrane proteins 1 and 2 were significantly decreased in PD; early endosomal antigen 1 was decreased and lysozyme increased in PSP; and lysosomal-associated membrane proteins 1 and 2, microtubule-associated protein 1 light chain 3 and lysozyme were increased in CBD. A panel of lysosomal-associated membrane protein 2, lysozyme and microtubule-associated protein 1 light chain discriminated between controls, PD and 4-repeat tauopathies.ConclusionsThis study offers proof of concept that select lysosomal network proteins are differentially expressed in cerebrospinal fluid of Parkinson's disease, corticobasal syndrome and progressive supranuclear palsy. Lysosomal network protein analysis could be further developed as a diagnostic fluid biomarker in parkinsonian syndromes.