Project description:Lung cancer accounts for the greatest number of cancer deaths in the world. Tobacco smoke-associated cancers constitute the majority of lung cancer cases but never-smoker cancers comprise a significant and increasing fraction of cases. Recent genomic and transcriptomic sequencing efforts of lung cancers have revealed distinct sets of genetic aberrations of smoker and never-smoker lung cancers that implicate disparate biology and therapeutic strategies. Autochthonous mouse models have contributed greatly to our understanding of lung cancer biology and identified novel therapeutic targets and strategies in the era of targeted therapy. With the emergence of immuno-oncology, mouse models may continue to serve as valuable platforms for novel biological insights and therapeutic strategies. Here, we will review the variety of available autochthonous mouse models of lung cancer, their relation to human smoker and never-smoker lung cancers, and their application to immuno-oncology and immune checkpoint blockade that is revolutionizing lung cancer therapy.
Project description:PurposeLung cancer in never smokers is recognized as a distinct molecular, clinicopathologic and epidemiologic entity. The aim of the study was to investigate the molecular profile in Swiss never smokers with lung adenocarcinoma and to correlate the mutation status with clinicopathologic and demographic patient characteristics and outcome.MethodsOne hundred thirty-eight never smokers diagnosed with lung adenocarcinoma at the University Hospital Zurich between 2011-2018 were included in the study. Data from the electronic medical records were reviewed to characterize clinicopathologic and demographic features, molecular profile, treatment and outcome.ResultsThe majority of patients were female (58.7%) with a median age at diagnosis of 64.5 years (range, 27.1-94.2 years). The most common mutations were EGFR (58.7%) followed by ALK (12.3%), TP53 (5.8%), MET (5.8%), KRAS (4.3%), ERBB2 (4.3%), PIK3CA (2.9%), BRAF (2.2%), ROS1 (1.4%), RET (1.4%), CTNNB1 (0.7%), PARP1 (0.7%), TET1 (0.7%) and PIK3CG (0.7%). Median overall survival (mOS) was 51.0 months (mo). Early clinical stage (p = 0.002) and treatment with targeted therapy (HR 2.53, 95% CI 1.35-4.74, p = 0.004) were independently associated with longer mOS. Patients with oncogenic driver mutations had significantly longer mOS (52.2 mo) compared to patients without mutations (16.9 mo) (HR 3.38, 95% CI 1.52-7.55, p = 0.003). Besides, patients with EGFR mutated (57.8 mo) or ALK rearranged (59.9 mo) tumors had significantly longer mOS compared to the EGFR wildtype (35.0 mo), ALK wildtype (46.5 mo) and pan-negative (16.9 mo) cohorts (HR 2.35, 95% CI 1.37-4.04, p = 0.002; HR 7.80, 95% CI 3.28-18.55, p < 0.001; HR 3.96, 95% CI 1.21-12.95, p = 0.023 and HR 34.78, 95% CI 3.48-34.65, p = 0.003).ConclusionNever smokers with lung adenocarcinoma display distinct clinicopathologic and molecular features and are characterized by a high incidence of targetable mutations. Never smokers with targetable mutations have significantly longer survival compared to patients without mutations.
Project description:Multiple primary cancers refers to the occurrence of two or more histologically distinct tumor types, either simultaneously or sequentially. The present report describes a rare case of a 46-year-old female patient simultaneously diagnosed with cervical cancer and low-grade follicular lymphoma (FL). The patient presented with vaginal bleeding and a subsequent cervical biopsy confirmed cervical squamous cell carcinoma. Imaging examinations indicated suspicious para-aortic lymph node metastasis, leading to a laparoscopic radical hysterectomy with lymph node dissection. Postoperative histopathological examination revealed cervical squamous cell carcinoma. However, para-aortic lymph node metastasis was not observed and instead, primary FL was detected. The current case underscores the importance of surgical intervention in cases where cervical cancer presents with isolated para-aortic lymph node enlargement, as it is essential for distinguishing between lymph node metastasis and the presence of a second primary tumor.
Project description:The aim of this study was to determine the distribution of known oncogenic driver mutations in female never-smoker Asian patients with lung adenocarcinoma. We analyzed 214 mutations across 26 lung cancer-associated genes and three fusion genes using the MassARRAY LungCarta Panel and the ALK, ROS1, and RET fusion assays in 198 consecutively resected lung adenocarcinomas from never-smoker females at a single institution. EGFR mutation, which was the most frequent driver gene mutation, was detected in 124 (63%) cases. Mutation of ALK, KRAS, PIK3CA, ERBB2, BRAF, ROS1, and RET genesoccurred in 7%, 4%, 2.5%, 1.5%, 1%, 1%, and 1% of cases, respectively. Thus, 79% of lung adenocarcinomas from never-smoker females harbored well-known oncogenic mutations. Mucinous adenocarcinomas tended to have a lower frequency of known driver gene mutations than other histologic subtypes. EGFR mutation was associated with older age and a predominantly acinar pattern, while ALK rearrangement was associated with younger age and a predominantly solid pattern. Lung cancer in never-smoker Asian females is a distinct entity, with the majority of these cancers developing from oncogenic mutations.
Project description:Genetic and epigenetic changes in cancer cells are typically divided into 'drivers' and 'passengers'. Drug development strategies target driver mutations, but inter- and intratumoral heterogeneity usually results in emergence of resistance. Here we model intratumoral evolution in the context of a fecundity/survivorship trade-off. Simulations demonstrate that the fitness value of any genetic change is not fixed but dependent on evolutionary triage governed by initial cell properties, current selection forces and prior genotypic/phenotypic trajectories. We demonstrate that spatial variations in molecular properties of tumour cells are the result of changes in environmental selection forces such as blood flow. Simulated therapies targeting fitness-increasing (driver) mutations usually decrease the tumour burden but almost inevitably fail due to population heterogeneity. An alternative strategy targets gene mutations that are never observed. Because up or downregulation of these genes unconditionally reduces cellular fitness, they are eliminated by evolutionary triage but can be exploited for targeted therapy.
Project description:Somatic mutations arising in human skin cancers are heterogeneously distributed across the genome, meaning that certain genomic regions (e.g., heterochromatin or transcription factor binding sites) have much higher mutation densities than others. Regional variations in mutation rates are typically not a consequence of selection, as the vast majority of somatic mutations in skin cancers are passenger mutations that do not promote cell growth or transformation. Instead, variations in DNA repair activity, due to chromatin organization and transcription factor binding, have been proposed to be a primary driver of mutational heterogeneity in melanoma. However, as discussed in this review here, recent studies indicate that chromatin organization and transcription factor binding also significantly modulate the rate at which UV lesions form in DNA. The authors propose that local variations in lesion susceptibility may be an important driver of mutational hotspots in melanoma and other skin cancers, particularly at binding sites for ETS transcription factors.
Project description:Korean women with a history of never smoking and with adenocarcinoma showed an increasing trend in lung cancer occurrence during 2002 to 2012. The two modifiable factors of never-smoker lung cancer in women are hormone and oncogenic virus infection. Based on previous studies, hormone replacement therapy (HRT) and human papillomavirus (HPV) infection might afford protection or be a risk factor, respectively. It is necessary to perform a pooled analysis of cohort studies to evaluate HRT and never-smoker lung cancer in women and a systematic review of case-control studies to determine the association between HPV infection and never-smoker lung cancer.
Project description:IntroductionEven though colorectal cancer is one of the most frequent in the world, its simultaneous presence with other neoplasms, such as renal, is still rare in incidence. This article aims to report and expose a literature review of the synchrony of colorectal cancer and renal carcinoma.Presentation of caseA 57-year-old female patient complaining of diffuse abdominal pain that worsened with food and improved with evacuation, especially in the periumbilical region and right iliac fossa, from moderate to strong intensity, starting 1 year ago, worsening in the last 3 months. An abdominal CT scan was performed, showing a lesion in the right kidney and a narrowing of the ascending colon lumen. Due to the possibility of cure, we opted for right colectomy and right nephrectomy at the same surgery.DiscussionSynchronous tumors are neoplasms in which the diagnostic interval is up to 6 months, and must be differentiated from metachronic neoplasms and even metastases between tumors. The incidence of synchronous colorectal and renal cancer is rare but appears to be divergent.ConclusionThe presence of synchronous tumors can be evidenced in imaging tests, such as CT scan, but appropriate diagnostic tests for each neoplasm, such as colonoscopy, should not be ruled out. The treatment of choice must be surgery, when possible, with the options of conventional access, videolaparoscopic and robotic surgery.
Project description:The mutational profiles of primary colorectal cancers (CRCs) and corresponding ovarian metastases were compared. Using a custom-made next generation sequencing panel, 115 cancer-driving genes were analyzed in a cohort of 26 primary CRCs and 30 matching ovarian metastases (four with bilateral metastases). To obtain a complete overview of the mutational profile, low thresholds were used in bioinformatics analysis to prevent low frequency passenger mutations from being filtered out. A subset of variants was validated using Sanger and/or hydrolysis probe assays. The mutational landscape of CRC that metastasized to the ovary was not strikingly different from CRC in consecutive series. When comparing primary CRCs and their matching ovarian metastases, there was considerable overlap in the mutations of early affected genes. A subset of mutations demonstrated less overlap, presumably being passenger mutations. In particular, primary CRCs showed a substantially high number of passenger mutations. We also compared the primary CRCs and matching metastases for stratifying variants of six genes (KRAS, NRAS, BRAF, FBXW7, PTEN and PIK3CA) that select for established (EGFR directed) or future targeted therapies. In a total of 31 variants 12 were not found in either of the two locations. Tumours thus differed in the number of discordant variants between the primary tumours and matching metastases. Half of these discordant variants were definitive class 4/5 pathogenic variants. However, in terms of temporal heterogeneity, no clear relationship was observed between the number of discordant variants and the time interval between primary CRCs and the detection of ovarian metastases. This suggests that dormant metastases may be present from the early days of the primary tumours.
Project description:BackgroundMultiple synchronous lung tumors (MSLT), particularly within a single lobe, represent a diagnostic and treatment challenge. While histologic assessment was once the only method to possibly distinguish multiple primary lung cancers, there is a growing interest in identifying unique genomic features or mutations to best characterize these processes.MethodsIn order to differentiate multiple primary lung malignancies from intrapulmonary metastases in patients with MSLT, we performed whole exome sequencing (WES) on 10 tumor samples from 4 patients with MSLT.ResultsShared mutations between tumors from the same patient varied from 0-91%. Patient 3 shared no common mutations; however, in Patients 2 and 4, identical mutations were identified among all tumors from each patient, suggesting that the three tumors identified in Patient 3 represent separate primary lung cancers, while those of Patients 1, 2 and 4 signify hematogenous and lymphatic spread.ConclusionsA high proportion of shared mutations between different lung tumors is likely indicative of intrapulmonary metastatic disease, while tumors with distinct genomic profiles likely represent multiple primary malignancies driven by distinct molecular events. Application of genomic profiling in the clinical setting may prove to be important to precise management of patients with MSLT.