Project description:Atypical anti-glomerular basement membrane (anti-GBM) disease is characterized by linear immunoglobulin G (IgG) deposition along the GBM without circulating IgG anti-GBM antibodies. Compared to classic anti-GBM disease, atypical anti-GBM disease tends to be milder with a more indolent course in certain cases. Moreover, pathologic disease pattern is much more heterogenous in atypical anti-GBM disease than in the classic type, which is uniformly characterized by diffuse crescentic and necrotizing glomerulonephritis. Although there is no single well-established target antigen in atypical anti-GBM disease, the target antigen (within the GBM) and the autoantibody type are hypothesized to be different from the classic type. Some patients have the same antigen as the Goodpasture antigen that are detected only by a highly sensitive technique (biosensor analysis). Some cases of atypical anti-GBM disease have autoantibodies of a different subclass restriction like IgG4, or of monoclonal nature. Antibodies targeting antigen/epitope structure other than the Goodpasture antigen can be detected using modified assays in some cases. Patients with IgA- and IgM-mediated anti-GBM disease are known to have negative circulating antibodies because conventional assays do not detect these classes of antibodies. A significant proportion of cases with atypical anti-GBM disease do not have any identifiable antibodies despite extensive evaluation. Nevertheless, extensive evaluation of atypical autoantibodies using modified assays and sensitive techniques should be attempted, if feasible. This review summarizes the recent literature on atypical anti-GBM disease.
Project description:In patients presenting with anti-glomerular basement membrane (GBM) disease with advanced isolated kidney involvement, the benefit of intensive therapy remains controversial due to adverse events, particularly infection. We aim to describe the burden of severe infections (SI) (requiring hospitalization or intravenous antibiotics) and identify predictive factors of SI in a large cohort of patients with anti-GBM disease. Among the 201 patients (median [IQR] age, 53 [30-71] years) included, 74 had pulmonary involvement and 127 isolated glomerulonephritis. A total of 161 SI occurred in 116 patients during the first year after diagnosis. These infections occurred during the early stage of care (median [IQR] time, 13 [8-19] days after diagnosis) with mainly pulmonary (45%), catheter-associated bacteremia (22%) and urinary tract (21%) infections. In multivariable analysis, positive ANCA (HR [95\% CI] 1.62 [1.07--2.44]; p = 0.02) and age at diagnosis (HR [95% CI] 1.10 [1.00-1.21]; p = 0.047) remained independently associated with SI. Age-adjusted severe infection during the first three months was associated with an increased three-year mortality rate (HR [95% CI] 3.13 [1.24-7.88]; p = 0.01). Thus, SI is a common early complication in anti-GBM disease, particularly in the elderly and those with positive anti-neutrophil cytoplasmic antibodies (ANCA). No significant association was observed between immunosuppressive strategy and occurrence of SI.
Project description:IntroductionIn some cases, immunoglobulin (IgA)-mediated antiglomerular basement membrane (anti-GBM) disease has been reported. Whether circulating IgA anti-GBM antibodies affect the clinico-pathologic characteristics and outcome of typical anti-GBM disease deserves further study.MethodsCirculating IgA anti-α3(IV)NC1 antibodies were examined by enzyme-linked immunosorbent assay (ELISA) using recombinant human α3(IV)NC1 as solid phase antigens in 107 patients with anti-GBM disease and 115 controls. Clinical, pathological, and follow-up data of patients were retrospectively analyzed.ResultsCirculating IgA anti-α3(IV)NC1 antibodies were found in 18.7% (20/107) of patients with anti-GBM disease but were not detected in healthy controls or in patients with other glomerular diseases. The positivity of circulating IgA anti-α3(IV)NC1 antibodies was not associated with whether the patient was with combined IgA nephropathy or other glomerulonephritis. Kidney immunofluorescence showed no statistical difference in IgA deposition between patients with circulating IgA anti-α3(IV)NC1 antibodies and patients without (30.0% vs. 40.4%, P = 0.725). The titers of circulating immunoglobulin G (IgG) anti-α3(IV)NC1 antibodies in patients with circulating IgA anti-α3(IV)NC1 antibodies were significantly higher than those without (200 [183.3, 200] vs. 161 [85.5, 200] U/ml, P = 0.005). There were no significant differences in kidney outcome and mortality between the 2 groups.ConclusionCirculating IgA anti-α3(IV)NC1 antibodies occurred in 18.7% (20/107) of patients with anti-GBM in our center and were specific to anti-GBM disease. Patients with circulating IgA anti-α3(IV)NC1 antibodies showed a higher levels of serum IgG anti-α3(IV)NC1 antibodies than those without.
Project description:BackgroundDisruptions in gene expression associated with the glomerular basement membrane (GBM) could precipitate glomerular dysfunction. Nevertheless, a comprehensive understanding of the characterization of GBM components within pediatric glomerular diseases and their potential association with glomerular function necessitates further systematic investigation.MethodsWe conducted a systematic analysis focusing on the pathological transformations and molecular attributes of key constituents within the GBM, specifically Collagen IV α3α4α5, Laminin α5β2γ1, and Integrin α3β1, across prevalent pediatric glomerular diseases.ResultsWe observed upregulation of linear expression levels of COL4A3/4/5 and Laminin 5α proteins, along with a partial reduction in the linear structural expression of Podocin in idiopathic nephrotic syndrome (INS), encompassing minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS), but showing a reduction in IgA nephropathy (IgAN), IgA vasculitis nephritis (IgAVN) and lupus nephritis (LN). Furthermore, our study revealed reductions in Laminin β2γ1 and Integrin α3β1 in both primary and secondary childhood glomerular diseases.ConclusionIn INS, notably MCD and FSGS, there is a notable increase in the linear expression levels of COL4A3/4/5 and Laminin 5α proteins. In contrast, in IgAN, IgAVN, and LN, there is a consistent reduction in the expression of these markers. Furthermore, the persistent reduction of Laminin β2γ1 and Integrin α3β1 in both primary and secondary childhood glomerular diseases suggests a shared characteristic of structural alterations within the GBM across these conditions.
Project description:BackgroundCD151 is a cell-surface molecule of the tetraspanin family. Its lateral interaction with laminin-binding integrin ɑ3β1 is important for podocyte adhesion to the glomerular basement membrane (GBM). Deletion of Cd151 in mice induces glomerular dysfunction, with proteinuria and associated focal glomerulosclerosis, disorganisation of GBM and tubular cystic dilation. Despite this, CD151 is not routinely screened for in patients with nephrotic-range proteinuria. We aimed to better understand the relevance of CD151 in human kidney disease.MethodsNext-generation sequencing (NGS) was used to detect the variant in CD151. Electron and light microscopy were used to visualise the filtration barrier in the patient kidney biopsy, and immunoreactivity of patient red blood cells to anti-CD151/MER2 antibodies was performed. Further validation of the CD151 variant as disease-causing was performed in zebrafish using CRISPR-Cas9.ResultsWe report a young child with nail dystrophy and persistent urinary tract infections who was incidentally found to have nephrotic-range proteinuria. Through targeted NGS, a novel, homozygous truncating variant was identified in CD151, a gene rarely reported in patients with nephrotic syndrome. Electron microscopy imaging of patient kidney tissue showed thickening of GBM and podocyte effacement. Immunofluorescence of patient kidney tissue demonstrated that CD151 was significantly reduced, and we did not detect immunoreactivity to CD151/MER2 on patient red blood cells. CRISPR-Cas9 depletion of cd151 in zebrafish caused proteinuria, which was rescued by injection of wild-type CD151 mRNA, but not CD151 mRNA containing the variant sequence.ConclusionsOur results indicate that a novel variant in CD151 is associated with nephrotic-range proteinuria and microscopic haematuria and provides further evidence for a role of CD151 in glomerular disease. Our work highlights a functional testing pipeline for future analysis of patient genetic variants. A higher resolution version of the Graphical abstract is available as Supplementary information.
Project description:A 46-year-old female presented with a chief complaint of fatigue and intermittent painless gross hematuria for one month. The patient was fluid overloaded on physical examination and noted to be in acute renal failure with a serum creatinine of 10.8 mg/dL. The patient was emergently started on hemodialysis. Serologies were negative for antinuclear antibody (ANA), anti-neutrophilic cytoplasmic antibody (ANCA), and anti-glomerular basement membrane (anti-GBM) antibody. However, renal biopsy revealed 90% glomerular involvement by temporally heterogeneous crescents ranging from cellular to fibrous. Immunofluorescence studies revealed strong, linear glomerular capillary wall staining for immunoglobulin G (IgG). Although the patient was treated with pulse dose steroids and cyclophosphamide, the patient ultimately developed infectious complications from immunosuppression, and treatment was terminated. This case highlights the atypical presentation of anti-GBM disease diagnosed based on renal biopsy with negative serologies. Although rare, the possibility of atypical anti-GBM antibodies which are not detected by standard commercial assays should be considered in such cases.
Project description:Anti-glomerular basement membrane (GBM) disease is a rare but life-threatening autoimmune disorder characterized by rapidly progressive glomerulonephritis with or without pulmonary hemorrhage. Renal biopsies of anti-GBM patients predominantly show linear deposition of IgG and complement component 3 (C3), indicating a close association between antigen-antibody reactions and subsequent complement activation in the pathogenesis of the disease. All three major pathways of complement activation, including the classical, lectin, and alternative pathways, are involved in human anti-GBM disease. Several complement factors, such as C3, C5b-9, and factor B, show a positive correlation with the severity of the renal injury and act as risk factors for renal outcomes. Furthermore, compared to patients with single positivity for anti-GBM antibodies, individuals who are double-seropositive for anti-neutrophil cytoplasmic antibody (ANCA) and anti-GBM antibodies exhibit a unique clinical phenotype that lies between ANCA-associated vasculitis (AAV) and anti-GBM disease. Complement activation may serve as a potential "bridge" for triggering both AAV and anti-GBM conditions. The aim of this article is to provide a comprehensive review of the latest clinical evidence regarding the role of complement activation in anti-GBM disease. Furthermore, potential therapeutic strategies targeting complement components and associated precautions are discussed, to establish a theoretical basis for complement-targeted therapies.
Project description:Anti-glomerular basement membrane (GBM) nephritis is characterized by circulating anti-GBM antibodies and crescentic glomerulonephritis (GN) with deposition of IgG along the GBM. In a limited number of cases, glomerular immune complexes have been identified in anti-GBM nephritis. A 38-year-old female presented azotemia, hematuria, and proteinuria without any pulmonary symptoms. A renal biopsy showed crescentic GN with linear IgG deposition along the GBM and mesangial IgA deposition. The patient was diagnosed as concurrent anti-GBM nephritis and IgA nephropathy. Therapies with pulse methylprednisolone and cyclophosphamide administration were effective. Concurrent cases of both anti-GBM nephritis and IgA nephropathy are rare among cases of anti-GBM diseases with deposition of immune complexes. This rare case of concurrent anti-GBM nephritis and IgA nephropathy with literature review is noteworthy.