Unknown

Dataset Information

0

Metal-organic framework-modulated Fe3O4 composite au nanoparticles for antibacterial wound healing via synergistic peroxidase-like nanozymatic catalysis.


ABSTRACT: Bacterial wound infections are a serious threat due to the emergence of antibiotic resistance. Herein, we report an innovative hybrid nanozyme independent of antibiotics for antimicrobial wound healing. The hybrid nanozymes are fabricated from ultra-small Au NPs via in-situ growth on metal-organic framework (MOF)-stabilised Fe3O4 NPs (Fe3O4@MOF@Au NPs, FMA NPs). The fabricated hybrid nanozymes displayed synergistic peroxidase (POD)-like activities. It showed a remarkable level of hydroxyl radicals (·OH) in the presence of a low dose of H2O2 (0.97 mM). Further, the hybrid FMA nanozymes exhibited excellent biocompatibility and favourable antibacterial effects against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The animal experiments indicated that the hybrid nanozymes promoted wound repair with adequate biosafety. Thus, the well-designed hybrid nanozymes represent a potential strategy for healing bacterial wound infections, without any toxic side effects, suggesting possible applications in antimicrobial therapy.

SUBMITTER: Liu C 

PROVIDER: S-EPMC10647143 | biostudies-literature | 2023 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Metal-organic framework-modulated Fe<sub>3</sub>O<sub>4</sub> composite au nanoparticles for antibacterial wound healing via synergistic peroxidase-like nanozymatic catalysis.

Liu Chuan C   Zhao Xuanping X   Wang Zichao Z   Zhao Yingyuan Y   Li Ruifang R   Chen Xuyang X   Chen Hong H   Wan Mengna M   Wang Xueqin X  

Journal of nanobiotechnology 20231115 1


Bacterial wound infections are a serious threat due to the emergence of antibiotic resistance. Herein, we report an innovative hybrid nanozyme independent of antibiotics for antimicrobial wound healing. The hybrid nanozymes are fabricated from ultra-small Au NPs via in-situ growth on metal-organic framework (MOF)-stabilised Fe<sub>3</sub>O<sub>4</sub> NPs (Fe<sub>3</sub>O<sub>4</sub>@MOF@Au NPs, FMA NPs). The fabricated hybrid nanozymes displayed synergistic peroxidase (POD)-like activities. It  ...[more]

Similar Datasets

| S-EPMC10753546 | biostudies-literature
| S-EPMC9037387 | biostudies-literature
| S-EPMC7437072 | biostudies-literature
| S-EPMC9565752 | biostudies-literature
| S-EPMC6829231 | biostudies-literature
| S-EPMC4569660 | biostudies-literature
| S-EPMC10369272 | biostudies-literature
| S-EPMC8596992 | biostudies-literature
| S-EPMC5292710 | biostudies-literature
| S-EPMC9313488 | biostudies-literature