Project description:BackgroundNo efficient vaccine against plague is currently available. We previously showed that a genetically attenuated Yersinia pseudotuberculosis producing the Yersinia pestis F1 antigen was an efficient live oral vaccine against pneumonic plague. This candidate vaccine however failed to confer full protection against bubonic plague and did not produce F1 stably.Methodology/principal findingsThe caf operon encoding F1 was inserted into the chromosome of a genetically attenuated Y. pseudotuberculosis, yielding the VTnF1 strain, which stably produced the F1 capsule. Given orally to mice, VTnF1 persisted two weeks in the mouse gut and induced a high humoral response targeting both F1 and other Y. pestis antigens. The strong cellular response elicited was directed mostly against targets other than F1, but also against F1. It involved cells with a Th1-Th17 effector profile, producing IFNγ, IL-17, and IL-10. A single oral dose (108 CFU) of VTnF1 conferred 100% protection against pneumonic plague using a high-dose challenge (3,300 LD50) caused by the fully virulent Y. pestis CO92. Moreover, vaccination protected 100% of mice from bubonic plague caused by a challenge with 100 LD50 Y. pestis and 93% against a high-dose infection (10,000 LD50). Protection involved fast-acting mechanisms controlling Y. pestis spread out of the injection site, and the protection provided was long-lasting, with 93% and 50% of mice surviving bubonic and pneumonic plague respectively, six months after vaccination. Vaccinated mice also survived bubonic and pneumonic plague caused by a high-dose of non-encapsulated (F1-) Y. pestis.SignificanceVTnF1 is an easy-to-produce, genetically stable plague vaccine candidate, providing a highly efficient and long-lasting protection against both bubonic and pneumonic plague caused by wild type or un-encapsulated (F1-negative) Y. pestis. To our knowledge, VTnF1 is the only plague vaccine ever reported that could provide high and durable protection against the two forms of plague after a single oral administration.
Project description:The present use of mRNA vaccines against COVID-19 has shown for the first time the potential of mRNA vaccines for infectious diseases. Here we will summarize the current knowledge about improved mRNA vaccines, i.e., the self-amplifying mRNA (saRNA) vaccines. This approach may enhance antigen expression by amplification of the antigen-encoding RNA. RNA design, RNA delivery, and the innate immune responses induced by RNA will be reviewed.
Project description:Messenger RNA (mRNA) lipid nanoparticle (LNP) vaccines have emerged as an effective vaccination strategy. Although currently applied toward viral pathogens, data concerning the platform's effectiveness against bacterial pathogens are limited. Here, we developed an effective mRNA-LNP vaccine against a lethal bacterial pathogen by optimizing mRNA payload guanine and cytosine content and antigen design. We designed a nucleoside-modified mRNA-LNP vaccine based on the bacterial F1 capsule antigen, a major protective component of Yersinia pestis, the etiological agent of plague. Plague is a rapidly deteriorating contagious disease that has killed millions of people during the history of humankind. Now, the disease is treated effectively with antibiotics; however, in the case of a multiple-antibiotic-resistant strain outbreak, alternative countermeasures are required. Our mRNA-LNP vaccine elicited humoral and cellular immunological responses in C57BL/6 mice and conferred rapid, full protection against lethal Y. pestis infection after a single dose. These data open avenues for urgently needed effective antibacterial vaccines.
Project description:Emerging and re-emerging viruses, such as Zaire Ebola virus (EBOV), pose a global threat and require immediate countermeasures, including the rapid development of effective vaccines that are easy to manufacture. Synthetic self-amplifying RNAs (saRNAs) attend to these needs, being safe and strong immune stimulators that can be inexpensively produced in large quantities, using cell-free systems and good manufacturing practice. Here, the first goal was to develop and optimize an anti-EBOV saRNA-based vaccine in terms of its antigen composition and route of administration. Vaccinating mice with saRNAs expressing the EBOV glycoprotein (GP) alone or in combination with the nucleoprotein (NP) elicited antigen-specific immune responses. GP-specific antibodies showed neutralizing activity against EBOV. Strong CD4+ T cell response against NP and GP and CD8+ T cell response against NP were detected by ELISpot assays. Intramuscular vaccination with saRNAs conferred better immune response than intradermal. Finally, mice vaccinated in a prime-boost regimen with saRNAs encoding both GP and NP or with GP alone survived an EBOV infection. In addition, a single dose of GP and NP saRNAs was also protective against fatal EBOV infection. Overall, saRNAs expressing viral antigens represent a promising vaccine platform.
Project description:Bubonic plague has caused three deadly pandemics in human history: from the mid-sixth to mid-eighth century, from the mid-fourteenth to the mid-eighteenth century and from the end of the nineteenth until the mid-twentieth century. Between the second and the third pandemics, plague was causing sporadic outbreaks in only a few countries in the Middle East, including Egypt. Little is known about this historical phase of plague, even though it represents the temporal, geographical and phylogenetic transition between the second and third pandemics. Here we analysed in detail an outbreak of plague that took place in Cairo in 1801, and for which epidemiological data are uniquely available thanks to the presence of medical officers accompanying the Napoleonic expedition into Egypt at that time. We propose a new stochastic model describing how bubonic plague outbreaks unfold in both rat and human populations, and perform Bayesian inference under this model using a particle Markov chain Monte Carlo. Rat carcasses were estimated to be infectious for approximately 4 days after death, which is in good agreement with local observations on the survival of infectious rat fleas. The estimated transmission rate between rats implies a basic reproduction number R0 of approximately 3, causing the collapse of the rat population in approximately 100 days. Simultaneously, the force of infection exerted by each infected rat carcass onto the human population increases progressively by more than an order of magnitude. We also considered human-to-human transmission via pneumonic plague or human specific vectors, but found this route to account for only a small fraction of cases and to be significantly below the threshold required to sustain an outbreak.
Project description:Zika virus (ZIKV) is the cause of a pandemic associated with microcephaly in newborns and Guillain-Barre syndrome in adults. Currently, there are no available treatments or vaccines for ZIKV, and the development of a safe and effective vaccine is a high priority for many global health organizations. We describe the development of ZIKV vaccine candidates using the self-amplifying messenger RNA (SAM) platform technology delivered by cationic nanoemulsion (CNE) that allows bedside mixing and is particularly useful for rapid responses to pandemic outbreaks. Two immunizations of either of the two lead SAM (CNE) vaccine candidates elicited potent neutralizing antibody responses to ZIKV in mice and nonhuman primates. Both SAM (CNE) vaccines protected these animals from ZIKV challenge, with one candidate providing complete protection against ZIKV infection in nonhuman primates. The data provide a preclinical proof of concept that a SAM (CNE) vaccine candidate can rapidly elicit protective immunity against ZIKV.
Project description:UnlabelledThe majority of human Yersinia pestis infections result from introduction of bacteria into the skin by the bite of an infected flea. Once in the dermis, Y. pestis can evade the host's innate immune response and subsequently disseminate to the draining lymph node (dLN). There, the pathogen replicates to large numbers, causing the pathognomonic bubo of bubonic plague. In this study, several cytometric and microscopic techniques were used to characterize the early host response to intradermal (i.d.) Y. pestis infection. Mice were infected i.d. with fully virulent or attenuated strains of dsRed-expressing Y. pestis, and tissues were analyzed by flow cytometry. By 4 h postinfection, there were large numbers of neutrophils in the infected dermis and the majority of cell-associated bacteria were associated with neutrophils. We observed a significant effect of the virulence plasmid (pCD1) on bacterial survival and neutrophil activation in the dermis. Intravital microscopy of i.d. Y. pestis infection revealed dynamic interactions between recruited neutrophils and bacteria. In contrast, very few bacteria interacted with dendritic cells (DCs), indicating that this cell type may not play a major role early in Y. pestis infection. Experiments using neutrophil depletion and a CCR7 knockout mouse suggest that dissemination of Y. pestis from the dermis to the dLN is not dependent on neutrophils or DCs. Taken together, the results of this study show a very rapid, robust neutrophil response to Y. pestis in the dermis and that the virulence plasmid pCD1 is important for the evasion of this response.ImportanceYersinia pestis remains a public health concern today because of sporadic plague outbreaks that occur throughout the world and the potential for its illegitimate use as a bioterrorism weapon. Since bubonic plague pathogenesis is initiated by the introduction of Y. pestis into the skin, we sought to characterize the response of the host's innate immune cells to bacteria early after intradermal infection. We found that neutrophils, innate immune cells that engulf and destroy microbes, are rapidly recruited to the injection site, irrespective of strain virulence, indicating that Y. pestis is unable to subvert neutrophil recruitment to the site of infection. However, we saw a decreased activation of neutrophils that were associated with Y. pestis strains harboring the pCD1 plasmid, which is essential for virulence. These findings indicate a role for pCD1-encoded factors in suppressing the activation/stimulation of these cells in vivo.
Project description:Single-stranded RNA viruses such as alphaviruses, flaviviruses, measles viruses and rhabdoviruses are characterized by their capacity of highly efficient self-amplification of RNA in host cells, which make them attractive vehicles for vaccine development. Particularly, alphaviruses and flaviviruses can be administered as recombinant particles, layered DNA/RNA plasmid vectors carrying the RNA replicon and even RNA replicon molecules. Self-amplifying RNA viral vectors have been used for high level expression of viral and tumor antigens, which in immunization studies have elicited strong cellular and humoral immune responses in animal models. Vaccination has provided protection against challenges with lethal doses of viral pathogens and tumor cells. Moreover, clinical trials have demonstrated safe application of RNA viral vectors and even promising results in rhabdovirus-based phase III trials on an Ebola virus vaccine. Preclinical and clinical applications of self-amplifying RNA viral vectors have proven efficient for vaccine development and due to the presence of RNA replicons, amplification of RNA in host cells will generate superior immune responses with significantly reduced amounts of RNA delivered. The need for novel and efficient vaccines has become even more evident due to the global COVID-19 pandemic, which has further highlighted the urgency in challenging emerging diseases.
Project description:RNA-based vaccines have recently emerged as a promising alternative to the use of DNA-based and viral vector vaccines, in part because of the potential to simplify how vaccines are made and facilitate a rapid response to newly emerging infections. SAM vaccines are based on engineered self-amplifying mRNA (SAM) replicons encoding an Ag, and formulated with a synthetic delivery system, and they induce broad-based immune responses in preclinical animal models. In our study, in vivo imaging shows that after the immunization, SAM Ag expression has an initial gradual increase. Gene expression profiling in injection-site tissues from mice immunized with SAM-based vaccine revealed an early and robust induction of type I IFN and IFN-stimulated responses at the site of injection, concurrent with the preliminary reduced SAM Ag expression. This SAM vaccine-induced type I IFN response has the potential to provide an adjuvant effect on vaccine potency, or, conversely, it might establish a temporary state that limits the initial SAM-encoded Ag expression. To determine the role of the early type I IFN response, SAM vaccines were evaluated in IFN receptor knockout mice. Our data indicate that minimizing the early type I IFN responses may be a useful strategy to increase primary SAM expression and the resulting vaccine potency. RNA sequence modification, delivery optimization, or concurrent use of appropriate compounds might be some of the strategies to finalize this aim.
Project description:mRNA vaccines were the first to be authorized for use against SARS-CoV-2 and have since demonstrated high efficacy against serious illness and death. However, limitations in these vaccines have been recognized due to their requirement for cold storage, short durability of protection, and lack of access in low-resource regions. We have developed an easily-manufactured, potent self-amplifying RNA (saRNA) vaccine against SARS-CoV-2 that is stable at room temperature. This saRNA vaccine is formulated with a nanostructured lipid carrier (NLC), providing stability, ease of manufacturing, and protection against degradation. In preclinical studies, this saRNA/NLC vaccine induced strong humoral immunity, as demonstrated by high pseudovirus neutralization titers to the Alpha, Beta, and Delta variants of concern and induction of bone marrow-resident antibody-secreting cells. Robust Th1-biased T-cell responses were also observed after prime or homologous prime-boost in mice. Notably, the saRNA/NLC platform demonstrated thermostability when stored lyophilized at room temperature for at least 6 months and at refrigerated temperatures for at least 10 months. Taken together, this saRNA delivered by NLC represents a potential improvement in RNA technology that could allow wider access to RNA vaccines for the current COVID-19 and future pandemics.