Project description:Many human childhood mitochondrial disorders result from abnormal mitochondrial DNA (mtDNA) and altered bioenergetics. These abnormalities span most of the mtDNA, demonstrating that there are no "unique" positions on the mitochondrial genome that when deleted or mutated produce a disease phenotype. This diversity implies that the relationship between mitochondrial genotype and clinical phenotype is very complex. The origins of clinical phenotypes are thus unclear, fundamentally difficult-to-treat, and are usually clinically devastating. Current treatment is largely supportive and the disorders progress relentlessly causing significant morbidity and mortality. Vitamin supplements and pharmacological agents have been used in isolated cases and clinical trials, but the efficacy of these interventions is unclear. In spite of recent advances in the understanding of the pathogenesis of mitochondrial diseases, a cure remains elusive. An optimal cure would be gene therapy, which involves introducing the missing gene(s) into the mitochondria to complement the defect. Our recent research results indicate the feasibility of an innovative protein-transduction ("protofection") technology, consisting of a recombinant mitochondrial transcription factor A (TFAM) that avidly binds mtDNA and permits efficient targeting into mitochondria in situ and in vivo. Thus, the development of gene therapy for treating mitochondrial disease offers promise, because it may circumvent the clinical abnormalities and the current inability to treat individual disorders in affected individuals. This review aims to focus on current treatment options and future therapeutics in mitochondrial disease treatment with a special emphasis on Leber's hereditary optic neuropathy.
Project description:BackgroundLeber's hereditary optic neuropathy (LHON) is a common form of mitochondrial disease. The typical clinical presentation of LHON is subacute, painless loss of vision resulting from bilateral optic nerve atrophy. Moreover, extra-ocular manifestations such as cardiac conduction abnormalities and neurological manifestations such as multiple sclerosis (MS) like disease or parkinsonism are encountered in some patients. Abnormal findings in spinal cord MR imaging or in the cerebrospinal fluid (CSF) have been observed in previous cases of LHON-associated myelopathy.Case presentationWe report a male patient with LHON who developed symptoms of myelopathy including gait unsteadiness, enhanced deep tendon reflexes and sensory loss of the lower extremities. Imaging of the brain and spinal cord, CSF analysis, as well as neurography and electromyography did not disclose any abnormalities. The somatosensory evoked potential (SEP) findings were suggestive of dorsal column dysfunction.ConclusionsThe patient case demonstrates that myelopathy associated with LHON can present without abnormal findings in central nervous system MR imaging or in the CSF, and without evidence suggestive of multiple sclerosis or MS-like disease. The dorsal column seems to be particularly vulnerable to myelopathy changes in LHON. Evoked potential investigations may assist in confirming the diagnosis, when clinical features are in line with myelopathy but findings in CSF analysis and central nervous system imaging are normal.
Project description:Leber's hereditary optic neuropathy, the most frequent mitochondrial disease due to mitochondrial DNA point mutations in complex I, is characterized by the selective degeneration of retinal ganglion cells, leading to optic atrophy and loss of central vision prevalently in young males. The current study investigated the reasons for the higher prevalence of Leber's hereditary optic neuropathy in males, exploring the potential compensatory effects of oestrogens on mutant cell metabolism. Control and Leber's hereditary optic neuropathy osteosarcoma-derived cybrids (11778/ND4, 3460/ND1 and 14484/ND6) were grown in glucose or glucose-free, galactose-supplemented medium. After having shown the nuclear and mitochondrial localization of oestrogen receptors in cybrids, experiments were carried out by adding 100 nM of 17β-oestradiol. In a set of experiments, cells were pre-incubated with the oestrogen receptor antagonist ICI 182780. Leber's hereditary optic neuropathy cybrids in galactose medium presented overproduction of reactive oxygen species, which led to decrease in mitochondrial membrane potential, increased apoptotic rate, loss of cell viability and hyper-fragmented mitochondrial morphology compared with control cybrids. Treatment with 17β-oestradiol significantly rescued these pathological features and led to the activation of the antioxidant enzyme superoxide dismutase 2. In addition, 17β-oestradiol induced a general activation of mitochondrial biogenesis and a small although significant improvement in energetic competence. All these effects were oestrogen receptor mediated. Finally, we showed that the oestrogen receptor β localizes to the mitochondrial network of human retinal ganglion cells. Our results strongly support a metabolic basis for the unexplained male prevalence in Leber's hereditary optic neuropathy and hold promises for a therapeutic use for oestrogen-like molecules.
Project description:Mutations to the ND5 gene are uncommonly associated with Leber's hereditary optic neuropathy (LHON). Herein, we describe a 57-year-old man with the m. 13528A>G, p. (Thr398Ala) mutation at the ND5 gene who presented with progressive bilateral vision loss over the course of 3 months. He had a significant history of smoking and alcohol consumption. Visual field testing demonstrated bilateral central scotomas. At 2-year follow-up, his visual acuity improved relative to baseline and temporal optic disc pallor was observed in both eyes. There are scarce reports of this mutation in the literature, and this case report further expands the clinical presentation of the m. 13528A>G mutation at the ND5 gene in patients with LHON phenotype.
Project description:PurposeTo report the clinical findings of a Japanese patient presenting with retinitis pigmentosa (RP) together with optic neuropathy and COQ2 mutations.ObservationsThe patient had experienced night blindness and photophobia since his 20s. At 27 years of age, he experienced sudden vision loss in his left eye. We performed comprehensive ophthalmic examinations. Trio-based whole-exome sequencing was performed to identify the candidate variants, which were confirmed by Sanger sequencing. Fundus examination revealed typical RP findings with an additional Leber hereditary optic neuropathy (LHON). The patient's visual acuity was severely affected, and the visual field showed central scotoma. Electroretinograms were non-recordable under scotopic condition and showed reduced response under photopic conditions. Genetic analysis revealed compound heterozygous COQ2 variants in the patient: c.469C > T [p.(P157S], and c.518G > A [p.(R173H)]. Co-segregation analysis in the unaffected parents confirmed that the two variants were in trans. During the 4-year follow-up period, his visual acuity and central scotoma gradually improved.ConclusionThis is the first description of a case of RP together with LHON harboring COQ2 mutations. Additional cases are necessary to more accurately determine the clinical course and mutation spectrum in this condition.
Project description:Leber's hereditary optic neuropathy (LHON) is the most frequent mitochondrial disease and was the first to be genetically defined by a point mutation in mitochondrial DNA (mtDNA). A molecular diagnosis is achieved in up to 95% of cases, the vast majority of which are accounted for by 3 mutations within mitochondrial complex I subunit-encoding genes in the mtDNA (mtLHON). Here, we resolve the enigma of LHON in the absence of pathogenic mtDNA mutations. We describe biallelic mutations in a nuclear encoded gene, DNAJC30, in 33 unsolved patients from 29 families and establish an autosomal recessive mode of inheritance for LHON (arLHON), which to date has been a prime example of a maternally inherited disorder. Remarkably, all hallmarks of mtLHON were recapitulated, including incomplete penetrance, male predominance, and significant idebenone responsivity. Moreover, by tracking protein turnover in patient-derived cell lines and a DNAJC30-knockout cellular model, we measured reduced turnover of specific complex I N-module subunits and a resultant impairment of complex I function. These results demonstrate that DNAJC30 is a chaperone protein needed for the efficient exchange of complex I subunits exposed to reactive oxygen species and integral to a mitochondrial complex I repair mechanism, thereby providing the first example to our knowledge of a disease resulting from impaired exchange of assembled respiratory chain subunits.
Project description:PurposeTo screen mitochondrial DNA (mtDNA) variations in Leber hereditary optic neuropathy (LHON).MethodsTen LHON patients were selected from neuro-ophthalmology clinics of All India Institute of Medical Sciences (AIIMS), New Delhi, India. Clinical evaluation included slit-lamp biomicroscopy, fundus examination, and neuroimaging. DNA was isolated from whole blood samples. The entire coding region of the mitochondrial genome was amplified by PCR in ten patients and 20 controls. The full mtDNA genome except D-loop was sequenced. All sequences were analyzed against mitochondrial reference sequence NC_012920.ResultsMtDNA sequencing revealed a total of 30 nucleotide variations in the ten LHON patients and 29 in the 20 controls. Of 30 changes, 30.00% (9/30) were nonsynonymous, and the remaining 70.00% (21/30) were synonymous. In controls, a total of five changes were nonsynonymous. Out of the total 14 nonsynonymous changes observed in cases and controls, four (p.A52T in nicotinamide adenine dinucleotide [NADH] dehydrogenase [ND1] protein; p.L128Q in ND2; p.W48R in ATPase6; p.R340H in ND4 protein) were pathogenic. Four patients were positive for either of pathogenic changes. In total, 16.66% (5/30) variations were novel out of which 40.00% (2/5) were nonsynonymous. All novel variations were submitted to the GenBank database, and accession numbers were obtained. Primary LHON mutations in complex I genes have been considered a hallmark feature of LHON patients, and primary LHON mutations were present in two cases in this study. Mutations in complex I genes (ND genes) account for 50%-90% of LHON pedigrees in different ethnic pedigrees. In this study the highest numbers of changes were also present in complex I genes (46.66%; 14/30) followed by complex IV (30.00%; 9/30), complex III (16.66%; 5/30), and then complex V (6.66%; 2/30). Complex I had 5/30 (16.66%) nonsynonymous changes, complex III had 1/30 (3.33%), complex IV had 1/30 (3.33%), and complex V had 2/30 (6.66%) nonsynonymous changes. Nonsynonymous mutations in cytochrome c oxidase (COX) genes have been reported previously in LHON patients. Nonsynonymous mtDNA variations may adversely affect the respiratory chain and impair the oxidative phosphorylation (OXPHOS) pathway, resulting in low ATP production and elevated reactive oxygen species (ROS) levels, which cause oxidative stress. It has previously been reported that oxidative stress (OS) leads to oxidative damage of cellular macromolecules, such as mitochondrial and nuclear DNA, proteins, and lipids along with energy depletion and a local imbalance of calcium homeostasis, resulting in neuronal degeneration. OS is the underlying etiology in several ocular diseases and also plays an essential role in LHON.ConclusionsA total of five novel mtDNA variations were identified in this study. Nonsynonymous mtDNA variations may adversely affect the respiratory chain and impair the OXPHOS pathway, resulting in low ATP production and elevated ROS levels. OS further damages both nuclear and mtDNA. This preliminary study describes mtDNA sequence variations in a relatively small number of LHON patients of north Indian ethnic origin. However, these results should be confirmed in other populations. Early diagnosis of mtDNA variations and prompt anti-oxidant administration in these cases may delay OS-induced injury to retinal ganglion cells (RGCs) and hence improve visual prognosis.
Project description:Leber's hereditary optic neuropathy (LHON, MIM#535000) is the most common form of inherited optic neuropathies and mitochondrial DNA-related diseases. The pathogenicity of mutations in genes encoding components of mitochondrial Complex I is well established, but the underlying pathomechanisms of the disease are still unclear. Hypothesizing that oxidative stress related to Complex I deficiency may increase protein S-glutathionylation, we investigated the proteome-wide S-glutathionylation profiles in LHON (n = 11) and control (n = 7) fibroblasts, using the GluICAT platform that we recently developed. Glutathionylation was also studied in healthy fibroblasts (n = 6) after experimental Complex I inhibition. The significantly increased reactive oxygen species (ROS) production in the LHON group by Complex I was shown experimentally. Among the 540 proteins which were globally identified as glutathionylated, 79 showed a significantly increased glutathionylation (p < 0.05) in LHON and 94 in Complex I-inhibited fibroblasts. Approximately 42% (33/79) of the altered proteins were shared by the two groups, suggesting that Complex I deficiency was the main cause of increased glutathionylation. Among the 79 affected proteins in LHON fibroblasts, 23% (18/79) were involved in energetic metabolism, 31% (24/79) exhibited catalytic activity, 73% (58/79) showed various non-mitochondrial localizations, and 38% (30/79) affected the cell protein quality control. Integrated proteo-metabolomic analysis using our previous metabolomic study of LHON fibroblasts also revealed similar alterations of protein metabolism and, in particular, of aminoacyl-tRNA synthetases. S-glutathionylation is mainly known to be responsible for protein loss of function, and molecular dynamics simulations and 3D structure predictions confirmed such deleterious impacts on adenine nucleotide translocator 2 (ANT2), by weakening its affinity to ATP/ADP. Our study reveals a broad impact throughout the cell of Complex I-related LHON pathogenesis, involving a generalized protein stress response, and provides a therapeutic rationale for targeting S-glutathionylation by antioxidative strategies.
Project description:Leber's hereditary optic neuropathy (LHON) is a rare mitochondrial retinopathy, caused by mutations in subunits of complex I of the respiratory chain, which leads to elevated levels of oxidative stress and an insufficient energy supply. This molecular pathology is thought to be responsible for the dysfunction and eventual apoptotic loss of retinal ganglion cells in the eye, which ultimately results in blindness. Many strategies, ranging from neuroprotectants, antioxidants, anti-apoptotic- and anti-inflammatory compounds have been tested with mixed results. Currently, the most promising compounds are short-chain quinones that have been shown to protect the vision of LHON patients during the early stages of the disease. This commentary gives a brief overview on the current status of tested therapeutics and also addresses future developments such as the use of gene therapy that hopefully will provide safe and efficient therapy options for all LHON patients.