Project description:Designing and manufacturing efficient vaccines against coronavirus disease 2019 (COVID-19) is a major objective. In this systematic review, we aimed to evaluate the most important vaccines under construction worldwide, their efficiencies and clinical results in healthy individuals and in those with specific underlying diseases. We conducted a comprehensive search in PubMed, Scopus, EMBASE, and Web of Sciences by 1 December 2021 to identify published research studies. The inclusion criteria were publications that evaluated the immune responses and safety of COVID-19 vaccines in healthy individuals and in those with pre-existing diseases. We also searched the VAERS database to estimate the incidence of adverse events of special interest (AESI) post COVID-19 vaccination. Almost all investigated vaccines were well tolerated and developed good levels of both humoural and cellular responses. A protective and efficient humoural immune response develops after the second or third dose of vaccine and a longer interval (about 28 days) between the first and second injections of vaccine could induce higher antibody responses. The vaccines were less immunogenic in immunocompromised patients, particularly those with haematological malignancies. In addition, we found that venous and arterial thrombotic events, Bell's palsy, and myocarditis/pericarditis were the most common AESI. The results showed the potency of the SARS-CoV-2 vaccines to protect subjects against disease. The provision of further effective and safe vaccines is necessary in order to reach a high coverage of immunisation programs across the globe and to provide protection against infection itself.
Project description:The novel coronavirus disease (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has rapidly spread across the world. This resulted an alarming number of fatalities with millions of confirmed infected cases, pretending severe public health, economic, and social threats. There is no specific therapeutic drugs or licensed vaccines or treatments to fight against lethal COVID-19 infections. Given the significant threats of COVID-19, the global organizations are racing to identify epidemiological and pathogenic mechanisms of COVID-19 to find treatment regimens and effective therapeutic modalities for future prevention. Herein, we reviewed the therapeutic interventions and vaccines for COVID-19 based on the existing knowledge and understanding of similar coronaviruses, including MERS-CoV and SARS-CoV. The information constitutes a paramount intellectual basis to sustenance ongoing research for the discovery of vaccines and therapeutic agents. This review signifies the most available frontiers in the viral vaccine development approaches to counter the COVID-19/SARS-CoV-2.
Project description:The world is presently in crisis facing an outbreak of a health-threatening microorganism known as COVID-19, responsible for causing uncommon viral pneumonia in humans. The virus was first reported in Wuhan, China, in early December 2019, and it quickly became a global concern due to the pandemic. Challenges in this regard have been compounded by the emergence of several variants such as B.1.1.7, B.1.351, P1, and B.1.617, which show an increase in transmission power and resistance to therapies and vaccines. Ongoing researches are focused on developing and manufacturing standard treatment strategies and effective vaccines to control the pandemic. Despite developing several vaccines such as Pfizer/BioNTech and Moderna approved by the U.S. Food and Drug Administration (FDA) and other vaccines in phase 4 clinical trials, preventive measures are mandatory to control the COVID-19 pandemic. In this review, based on the latest findings, we will discuss different types of drugs as therapeutic options and confirmed or developing vaccine candidates against SARS-CoV-2. We also discuss in detail the challenges posed by the variants and their effect on therapeutic and preventive interventions.
Project description:ACE2 on epithelial cells is the SARS-CoV-2 entry receptor. Single-cell RNA-sequencing data derived from two COVID-19 cohorts revealed that MAP4K3/GLK-positive epithelial cells were increased in patients. SARS-CoV-2-induced GLK overexpression in epithelial cells correlated with COVID-19 severity and vesicle secretion. GLK overexpression induced the epithelial cell-derived exosomes containing ACE2; the GLK-induced exosomes transported ACE2 proteins to recipient cells, facilitating pseudovirus infection. Consistently, ACE2 proteins were increased in the serum exosomes from another COVID-19 cohort. Remarkably, SARS-CoV-2 spike protein stimulated GLK, and GLK stabilized ACE2 in epithelial cells. Mechanistically, GLK phosphorylated ACE2 at two serine residues (Ser776, Ser783), leading to dissociation of ACE2 from its E3 ligase UBR4. Reduction of UBR4-induced Lys48-linked ubiquitination at three lysine residues (Lys26, Lys112, Lys114) of ACE2 prevented its degradation. Furthermore, SARS-CoV-2 pseudovirus or live virus infection in humanized ACE2 mice induced GLK and ACE2 protein levels, as well as ACE2-containing exosomes. Collectively, ACE2 stabilization by SARS-CoV-2-induced MAP4K3/GLK may contribute to the pathogenesis of COVID-19.
Project description:The idea of producing vaccines in plants originated in the late 1980s. Initially, it was contemplated that this notion could facilitate the concept of edible vaccines, making them more cost effective and easily accessible. Initial studies on edible vaccines focussed on the use of a variety of different transgenic plant host species for the production of vaccine antigens. However, adequate expression levels of antigens, the difficulties predicted with administration of consistent doses, and regulatory rules required for growth of transgenic plants gave way to the development of vaccine candidates that could be purified and administered parenterally. The field has subsequently advanced with improved expression techniques including a shift from using transgenic to transient expression of antigens, refinement of purification protocols, a deeper understanding of the biological processes and a wealth of evidence of immunogenicity and efficacy of plant-produced vaccine candidates, all contributing to the successful practice of what is now known as biopharming or plant molecular farming. The establishment of this technology has resulted in the development of many different types of vaccine candidates including subunit vaccines and various different types of nanoparticle vaccines targeting a wide variety of bacterial and viral diseases. This has brought further acceptance of plants as a suitable platform for vaccine production and in this review, we discuss the most recent advances in the production of vaccines in plants for human use.
Project description:Since the first successful application of messenger ribonucleic acid (mRNA) as a vaccine agent in a preclinical study nearly 30 years ago, numerous advances have been made in the field of mRNA therapeutic technologies. This research uncovered the unique favorable characteristics of mRNA vaccines, including their ability to give rise to non-toxic, potent immune responses and the potential to design and upscale them rapidly, making them excellent vaccine candidates during the coronavirus disease 2019 (COVID-19) pandemic. Indeed, the first two vaccines against COVID-19 to receive accelerated regulatory authorization were nucleoside-modified mRNA vaccines, which showed more than 90% protective efficacy against symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection alongside tolerable safety profiles in the pivotal phase III clinical trials. Real-world evidence following the deployment of global vaccination campaigns utilizing mRNA vaccines has bolstered clinical trial evidence and further illustrated that this technology can be used safely and effectively to combat COVID-19. This unprecedented success also emphasized the broader potential of this new drug class, not only for other infectious diseases, but also for other indications, such as cancer and inherited diseases. This review presents a brief history and the current status of development of four mRNA vaccine platforms, nucleoside-modified and unmodified mRNA, circular RNA, and self-amplifying RNA, as well as an overview of the recent progress and status of COVID-19 mRNA vaccines. We also discuss the current and anticipated challenges of these technologies, which may be important for future research endeavors and clinical applications.
Project description:The COVID-19 pandemic caused by SARS-CoV-2 has spread rapidly. To date, countries have relied on the prevention of the disease through isolation, quarantine, and clinical care of affected individuals. However, studies on the roles of asymptomatic and mildly infected subjects in disease transmission, use of antiviral drugs, and vaccination of the general population will be very important for mitigating the effects of the eventual return of this pandemic. Initial investigations are ongoing to evaluate antigenic structures of SARS-CoV-2 and the immunogenicity of vaccine candidates. There also is a need to comprehensively compile the details of previous studies on SARS-related vaccines that can be extrapolated to identify potent vaccine targets for developing COVID-19 vaccines. This review aims to analyze previous studies, current status, and future possibilities for producing SARS-CoV-2 vaccines.
Project description:Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has been recently identified as a novel member of beta coronaviruses (CoVs) and the cause of coronavirus disease 2019 (COVID-19). It has been first discovered in China and soon has spread across continents with an escalating number of mortalities. There is an urgent need for developing a COVID-19 vaccine to control the rapid transmission and the deleterious impact of the virus. The potent vaccine should have a good tolerable and efficacious profile to induce target-specific humoral and cellular immune responses. It should also exhibit no or minimal detrimental effects in children, young adults, and elderly people with or without co-morbidities from different racial backgrounds. Previously published findings of SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) played vital role in the characterization of surface spike proteins as the tool of entry of the SARS-CoV-2 into host cells. It has become evident that SARS-CoVs have high genetic similarity and this implies antecedent vaccination strategies could be implicated in the production of COVID-19 vaccines. Although several vaccines have been approved and rolled out, only a handful of them have passed the three phases of clinical studies. This review highlights the completed, and ongoing clinical trials of COVID-19 vaccines and efforts are being made globally to avert the pandemic.
Project description:Bat sarbecovirus BANAL-236 is highly related to SARS-CoV-2 and infects human cells, albeit lacking the furin cleavage site in its spike protein. BANAL-236 replicates efficiently and pauci-symptomatically in humanized mice and in macaques, where its tropism is enteric, strongly differing from that of SARS-CoV-2. BANAL-236 infection leads to protection against superinfection by a virulent strain. We find no evidence of antibodies recognizing bat sarbecoviruses in populations in close contact with bats in which the virus was identified, indicating that such spillover infections, if they occur, are rare. Six passages in humanized mice or in human intestinal cells, mimicking putative early spillover events, select adaptive mutations without appearance of a furin cleavage site and no change in virulence. Therefore, acquisition of a furin site in the spike protein is likely a pre-spillover event that did not occur upon replication of a SARS-CoV-2-like bat virus in humans or other animals. Other hypotheses regarding the origin of the SARS-CoV-2 should therefore be evaluated, including the presence of sarbecoviruses carrying a spike with a furin cleavage site in bats.