Project description:Marine yeasts have tremendous potential in industrial applications but have received less attention than terrestrial yeasts and marine filamentous fungi. In this study, we have screened marine yeasts for amylolytic activity and identified an amylase-producing strain PH-Gra1 isolated from sea algae. PH-Gra1 formed as a coral-red colony on yeast-peptone-dextrose (YPD) agar; the maximum radial growth was observed at 22 °C, pH 6.5 without addition of NaCl to the media. Based on the morphology and phylogenetic analyses derived from sequences of internal transcribed spacer (ITS) and a D1/D2 domain of large subunit of ribosomal DNA, PH-Gra1 was designated Sporidiobolus pararoseus. S. pararoseus is frequently isolated from marine environments and known to produce lipids, carotenoids, and several enzymes. However, its amylolytic activity, particularly the optimum conditions for enzyme activity and stability, has not been previously characterized in detail. The extracellular crude enzyme of PH-Gra1 displayed its maximum amylolytic activity at 55 °C, pH 6.5, and 0%-3.0% (w/v) NaCl under the tested conditions, and the activity increased with time over the 180-min incubation period. In addition, the crude enzyme hydrolyzed potato starch more actively than corn and wheat starch, and was stable at temperatures ranging from 15 °C to 45 °C for 2 h. This report provides a basis for additional studies of marine yeasts that will facilitate industrial applications.
Project description:AIMS:To create an Aspergillus niger mutant with increased tolerance against ferulic acid using evolutionary adaptation. METHODS AND RESULTS:Evolutionary adaptation of A. niger N402 was performed by consecutive growth on increasing concentrations of ferulic acid in the presence of 25 mmol l-1 d-fructose, starting from 0·5 mmol l-1 and ending with 5 mmol l-1 ferulic acid. The A. niger mutant obtained after six months, named Fa6, showed increased ferulic acid tolerance compared to the parent. In addition, Fa6 has increased ferulic acid consumption and a higher conversion rate, suggesting that the mutation affects aromatic metabolism of this species. Transcriptome analysis of the evolutionary mutant on ferulic acid revealed a distinct gene expression profile compared to the wild type. Further analysis of this mutant and the parent strain provided the first experimental confirmation that A. niger converts coniferyl alcohol to ferulic acid. CONCLUSIONS:The evolutionary adaptive A. niger mutant Fa6 has beneficial mutations that increase the tolerance, conversion rate and uptake of ferulic acid. SIGNIFICANCE AND IMPACT OF THE STUDY:This study demonstrates that evolutionary adaptation is a powerful tool to modify micro-organisms towards increased tolerance to harsh conditions, which is beneficial for various industrial applications.
Project description:D-Mannitol is the predominant carbon compound in conidiospores of the filamentous fungus Aspergillus niger and makes up 10 to 15% of the dry weight. A number of physiological functions have been ascribed to mannitol, including serving as a reserve carbon source, as an antioxidant, and to store reducing power. In this study, we cloned and characterized the A. niger mpdA gene, which encodes mannitol 1-phosphate dehydrogenase (MPD), the first enzyme in the mannitol biosynthesis pathway. The mpdA promoter contains putative binding sites for the development-specific transcription factors BRLA and ABAA. Furthermore, increased expression of mpdA in sporulating mycelium suggests that mannitol biosynthesis is, to a certain extent, developmentally regulated in A. niger. Inactivation of mpdA abolished mannitol biosynthesis in growing mycelium and reduced the mannitol level in conidiospores to 30% that in the wild type, indicating that MPD and mannitol 1-phosphate phosphatase form the major metabolic pathway for mannitol biosynthesis in A. niger. The viability of spores after prolonged storage and germination kinetics were normal in an mpdA null mutant, indicating that mannitol does not play an essential role as a reserve carbon source in A. niger conidia. However, conidiospores of a DeltampdA strain were extremely sensitive to a variety of stress conditions, including high temperature, oxidative stress and, to a lesser extent, freezing and lyophilization. Since mannitol supplied in the medium during sporulation repaired this deficiency, mannitol appears to be essential for the protection of A. niger spores against cell damage under these stress conditions.
Project description:1. Tightly coupled mitochondria were isolated from Aspergillus niger by using an all-glass homogenizer followed by differential centrifugation. 2. The mitochondria oxidized the common intermediates of the tricarboxylic acid cycle, NADH(2) and the ascorbate-tetramethyl-p-phenylenediamine system. 3. High P/O ratios and control of respiration by ADP were obtained with all substrates tested. The average P/O ratios observed were: 1.5-1.8 with succinate as substrate [respiratory control ratio (RC) 2-4]; 0.8-1.0 with ascorbate-tetramethyl-p-phenylenediamine (RC 1.2-1.5); 1.4-1.8 with NADH(2) (RC 2-3); 2.4-2.8 with alpha-oxoglutarate (RC 3-5). 4. Bovine serum albumin (0.05-0.2%) was essential for tightly coupled respiration to be observed. 5. Coupled oxidation of exogenous NADH(2) was relatively insensitive to rotenone and Amytal. 6. The mitochondria responded to specific inhibitors and uncoupling agents in a manner similar to that of mammalian mitochondria. 7. It was concluded that the isolated mitochondria from A. niger show respiratory properties similar to those reported for intact yeast and mammalian mitochondria.
Project description:The red stretcher bacterium Sporidiobolus pararoseus is a high producer of carotenoids such as torularhodin, but its presence in vinegar has not been detected. Moreover, torularhodin has several biological activities, but its effect on the LPS-induced RAW 264.7 inflammatory cell model has also yet to be elucidated. In this study, S. pararoseus was identified in different vinegar samples from China by ITS sequencing. Meanwhile, one of the strains was deeply resolved by whole genome sequencing and functional annotation and named S. pararoseus ZQHL. Subsequently, the antioxidant effect of the fungal carotenoid torularhodin was investigated using in vitro DPPH, ABTS, and cellular models. Finally, LPS-induced RAW 264.7 cells were used as an inflammation model to assess torularhodin's protective effect on inflammatory cells and to determine whether the TLR4 pathway is associated with this process. The results indicate that torularhodin has good free radical scavenging ability in vitro and can contribute to cell viability. More importantly, torularhodin alleviated LPS-induced cellular inflammatory damage and reduced the expression of inflammatory factors such as TLR4, MyD88, and TNF-a. The mechanism may attenuate the cellular inflammatory response by inhibiting the TLR4 inflammatory pathway. In conclusion, torularhodin produced by S. pararoseus fungi in vinegar samples significantly scavenged free radicals in vitro and alleviated RAW 264.7 cellular inflammation by modulating the TLR4 pathway.
Project description:The production cost of microbial oil was reduced by improving the exopolysaccharide (EPS) production to share the production cost using Sporidiobolus pararoseus JD-2. Batch fermentation demonstrated that S. pararoseus JD-2 has the potential to co-produce oil and EPS with 120 g L-1 glucose, 20 g L-1 corn steep liquor and 10 g L-1 yeast extract as carbon and nitrogen sources. Using fed-batch fermentation for 72 h resulted in oil and EPS production of 41.6 ± 2.5 g L-1 and 13.1 ± 0.6 g L-1 with the productivity of 0.58 g L-1 h-1 and 0.182 g L-1 h-1, respectively. The fat soluble nutrients in the oil were studied, indicating that it was constituted of 79.19% unsaturated fatty acids and contained 505 mg per kg-oil of carotenoids. Moreover, the EPS contained only one type of polysaccharide; the main monosaccharide compositions were galactose, glucose and mannose in a proportion of 16 : 8 : 1. These results implied that EPS produced by S. pararoseus JD-2 was a new type of EPS.
Project description:The aim of this study was to find candidate genes in A. niger involved in the increase tolerance against ferulic acid in A. niger Fa6
Project description:Toxic fungal species produce hazardous substances known as mycotoxins. Consumption of mycotoxin contaminated feed and food causes a variety of dangerous diseases and can even lead to death of animals and humans, raising global concerns for adverse health effects. To date, several strategies have been developed to counteract with mycotoxin contamination. Red yeast as a novel biological dietary agent is a promising strategy to eliminate mycotoxicity in living organisms. Poultry are most susceptible animals to mycotoxin contamination, as they are fed a mixture of grains and are at higher risk of co-exposure to multiple toxic fungal substances. Therefore, this study investigated the genetic mechanism underlying long-term feeding with red yeast supplementation in interaction with multiple mycotoxins using transcriptome profiling (RNA_Seq) in the liver of laying hens. The results showed a high number of significantly differentially expressed genes in liver of chicken fed with a diet contaminated with mycotoxins, whereas the number of Significantly expressed genes was considerably reduced when the diet was supplemented with red yeast. The expression of genes involved in the phase I (CYP1A1, CYP1A2) and phase II (GSTA2, GSTA3, MGST1) detoxification process was downregulated in animals fed with mycotoxins contaminated diet, indicating suppression of the detoxification mechanisms. However, genes involved in antioxidant defense (GSTO1), apoptosis process (DUSP8), and tumor suppressor (KIAA1324, FBXO47, NME6) were upregulated in mycotoxins-exposed animals, suggesting activation of the antioxidant defense in response to mycotoxicity. Similarly, none of the detoxification genes were upregulated in hens fed with red yeast supplemented diet. However, neither genes involved in antioxidant defense nor tumor suppressor genes were expressed in the animals exposed to the red yeast supplemented feed, suggesting decreases the adsorption of biologically active mycotoxins in the liver of laying hens. We conclude that red yeast can act as a mycotoxin binder to decrease the adsorption of mycotoxins in the liver of laying hens and can be used as an effective strategy in the poultry feed industry to eliminate the adverse effects of mycotoxins for animals and increase food safety for human consumers.