Project description:Guava fruit has a short postharvest shelf life at room temperature. Melatonin is widely used for preservation of various postharvest fruit and vegetables. In this study, an optimal melatonin treatment (600 μmol·L-1, 2 h) was identified, which effectively delayed fruit softening and reduced the incidence of anthracnose on guava fruit. Melatonin effectively enhanced the antioxidant capacity and reduced the oxidative damage to the fruit by reducing the contents of superoxide anions, hydrogen peroxide and malondialdehyde; improving the overall antioxidant capacity and enhancing the enzymatic antioxidants and non-enzymatic antioxidants. Melatonin significantly enhanced the activities of catalase, superoxide dismutase, ascorbate peroxidase and glutathione reductase. The contents of total flavonoids and ascorbic acid were maintained by melatonin. This treatment also enhanced the defense-related enzymatic activities of chitinase and phenylpropanoid pathway enzymes, including phenylalanine ammonia lyase and 4-coumaric acid-CoA-ligase. The activities of lipase, lipoxygenase and phospholipase D related to lipid metabolism were repressed by melatonin. These results showed that exogenous melatonin can maintain the quality of guava fruit and enhance its resistance to disease by improving the antioxidant and defense systems of the fruit.
Project description:The Brazilian guava processing industry generates 5.5 M Mg guava waste year(-1) that could be recycled sustainably in guava agro-ecosystems as slow-release fertilizer. Our objectives were to elaborate nutrient budgets and to diagnose soil, foliar, and fruit nutrient balances in guava orchards fertilized with guava waste. We hypothesized that (1) guava waste are balanced fertilizer sources that can sustain crop yield and soil nutrient stocks, and (2) guava agroecosystems remain productive within narrow ranges of nutrient balances. A 6-year experiment was conducted in 8-year old guava orchard applying 0-9-18-27-36 Mg ha(-1) guava waste (dry mass basis) and the locally recommended mineral fertilization. Nutrient budgets were compiled as balance sheets. Foliar and fruit nutrient balances were computed as isometric log ratios to avoid data redundancy or resonance due to nutrient interactions and the closure to measurement unit. The N, P, and several other nutrients were applied in excess of crop removal while K was in deficit whatever the guava waste treatment. The foliar diagnostic accuracy reached 93% using isometric log ratios and knn classification, generating reliable foliar nutrient and concentration ranges at high yield level. The plant mined the soil K reserves without any significant effect on fruit yield and foliar nutrient balances involving K. High guava productivity can be reached at lower soil test K and P values than thought before. Parsimonious dosage of fresh guava waste should be supplemented with mineral K fertilizers to recycle guava waste sustainably in guava agroecosystems. Brazilian growers can benefit from this research by lowering soil test P and K threshold values to avoid over-fertilization and using fresh guava waste supplemented with mineral fertilizers, especially K. Because yield was negatively correlated with fruit acidity and Brix index, balanced plant nutrition and fertilization diagnosis will have to consider not only fruit yield targets but also fruit quality to meet requirements for guava processing.
Project description:Guava (Psidium guajava) is an important fleshy-fruited tree of the Myrtaceae family that is widely cultivated in tropical and subtropical areas of the world and has attracted considerable attention for the richness of ascorbic acid in its fruits. However, studies on the evolution and genetic breeding potential of guava are hindered by the lack of a reference genome. Here, we present a chromosome-level genomic assembly of guava using PacBio sequencing and Hi-C technology. We found that the genome assembly size was 443.8 Mb with a contig N50 of ~15.8 Mb. We annotated a total of 25 601 genes and 193.2 Mb of repetitive sequences for this genome. Comparative genomic analysis revealed that guava has undergone a recent whole-genome duplication (WGD) event shared by all species in Myrtaceae. In addition, through metabolic analysis, we determined that the L-galactose pathway plays a major role in ascorbic acid biosynthesis in guava fruits. Moreover, the softening of fruits of guava may result from both starch and cell wall degradation according to analyses of gene expression profiles and positively selected genes. Our data provide a foundational resource to support molecular breeding of guava and represent new insights into the evolution of soft, fleshy fruits in Myrtaceae.
Project description:The research of natural products has allowed for the discovery of biologically relevant compounds inspired by plant secondary metabolites, which contributes to the development of many chemotherapeutic drugs used in cancer treatment. Psidium guajava leaves present a diverse phytochemical composition including flavonoids, phenolics, meroterpenoids, and triterpenes as the major bioactive constituents. Guajadial, a caryophyllene-based meroterpenoid, has been studied for potential anticancer effects tested in tumor cells and animal experimental models. Moreover, guajadial has been reported to have a mechanism of action similar to tamoxifen, suggesting this compound as a promisor phytoestrogen-based therapeutic agent. Herein, the anti-estrogenic action and anti-proliferative activity of guajadial is reported. The enriched guajadial fraction was obtained by sequential chromatographic techniques from the crude P. guajava dichloromethane extract showing promising anti-proliferative activity in vitro with selectivity for human breast cancer cell lines MCF-7 and MCF-7 BUS (Total Growth Inhibition = 5.59 and 2.27 µg·mL-1, respectively). Furthermore, evaluation of anti-estrogenic activity in vivo was performed demonstrating that guajadial enriched fraction inhibited the proliferative effect of estradiol on the uterus of pre-pubescent rats. These results suggest a relationship between anti-proliferative and anti-estrogenic activity of guajadial, which possibly acts in tumor inhibition through estrogen receptors due to the compounds structural similarity to tamoxifen.
Project description:Guava (Psidium guajava L.) is an important fruit crop of the Indian sub-continent, with potential for improvements in quality and yield. The goal of the present study was to construct a genetic linkage map in an intraspecific cross between the elite cultivar 'Allahabad Safeda' and the Purple Guava landrace to identify the genomic regions responsible for important fruit quality traits, viz., total soluble solids, titratable acidity, vitamin C, and sugars. This population was phenotyped in field trials (as a winter crop) for three consecutive years, and showed moderate-to-high values of heterogeneity coefficients along with higher heritability (60.0%-97.0%) and genetic-advance-over-mean values (13.23%-31.17%), suggesting minimal environmental influence on the expression of fruit-quality traits and indicating that these traits can be improved by phenotypic selection methods. Significant correlations and strong associations were also detected among fruit physico-chemical traits in segregating progeny. The constructed linkage map consisted of 195 markers distributed across 11 chromosomes, spanning a length of 1,604.47 cM (average inter-loci distance of 8.80 markers) and with 88.00% coverage of the guava genome. Fifty-eight quantitative trait loci (QTLs) were detected in three environments with best linear unbiased prediction (BLUP) values using the composite interval mapping algorithm of the BIP (biparental populations) module. The QTLs were distributed on seven different chromosomes, explaining 10.95%-17.77% of phenotypic variance, with the highest LOD score being 5.96 for qTSS.AS.pau-6.2. Thirteen QTLs detected across multiple environments with BLUPs indicate stability and utility in a future breeding program for guava. Furthermore, seven QTL clusters with stable or common individual QTLs affecting two or more different traits were located on six linkage groups (LGs), explaining the correlation among fruit-quality traits. Thus, the multiple environmental evaluations conducted here have increased our understanding of the molecular basis of phenotypic variation, providing the basis for future high-resolution fine-mapping and paving the way for marker-assisted breeding of fruit-quality traits.
Project description:Root-knot nematodes (Meloidogyne spp.) infect a large number of crops including guava. We investigated a population of Meloidogyne sp. infecting guava in the Coimbatore region of Tamil Nadu, India for identification and species confirmation. Detailed morphological and morphometric observations based on second-stage juveniles, males, females, and perineal patterns showed resemblance of the isolated population with the original and subsequent descriptions of M. enterolobii. Isozyme analysis of the young egg-laying females displayed the characteristic esterase phenotype pattern similar to that of M. enterolobii. Additionally, the identity of the nematode population was further validated by M. enterolobii specific SCAR marker and ITS rDNA. Recently published reports on the occurrence and morphological descriptions of M. enterolobii from India are largely incongruent with the original and subsequent redescriptions of the species. Here, we present the most comprehensive morphology and morphometrics of an Indian population of M. enterolobii for its authentic identification.
Project description:BackgroundThe MYB family is one of the most significant groups of transcription factors in plants. However, several MYBs have been linked to secondary metabolism and are important for determining the color of fruit's peel and pulp. Despite being a substantial fruit crop in tropical and subtropical areas of the world, wilt-resistant hybrid guava (Psidium guajava × Psidium molle; PGPM) has not yet been the subject of a thorough examination. This study's goal was to assess the expression of MYB in guava fruit pulp, roots, and seeds to predict its function by in silico analysis of the guava root transcriptome data.ResultsIn the current study, we have mined the MYBs family of MYB genes from the transcriptome of the PGPM guava root. We have mined 15 distinct MYB transcription factor genes/transcripts viz MYB3, MYB4, MYB23, MYB86, MYB90, MYB308, MYB5, MYB82, MYB114, MYB6, MYB305, MYB44, MYB51, MYB46, and MYB330. From the analyses, it was found that R2-MYB and R3-MYB domains are conserved in all known guava MYB proteins. The expression of six different MYB TFs was examined using semi-quantitative RT-PCR in "Shweta" pulp (white colour pulp), "Lalit" pulp (red color pulp), "Lalit" root, and "Lalit" seed.ConclusionThere were 15 MYB family members observed in guava. They were unequally distributed across the chromosomes, most likely as a result of gene duplication. Additionally, the expression patterns of the particular MYBs showed that MYB may be involved in the control of wilt, fruit ripening, seed development, and root development. Our results allow for a more thorough functional characterization of the guava MYB family genes and open the door to additional research into one essential MYB transcription factor family of genes and its involvement in the growth and ripening of guava fruit.
Project description:Inhibition of intestinal glucose resorption can serve as an effective strategy for the prevention of an increase in blood glucose levels. We have recently shown that various extracts prepared from guava (Psidium guajava) inhibit sodium-dependent glucose cotransporter 1 (SGLT1)- and glucose transporter 2 (GLUT2)-mediated glucose transport in vitro (Caco-2 cells) and in vivo (C57BL/6N mice). However, the efficacy in humans remains to be confirmed. For this purpose, we conducted a parallelized, randomized clinical study with young healthy adults. Thirty-one volunteers performed an oral glucose tolerance test (OGTT) in which the control group received a glucose solution and the intervention group received a glucose solution containing a guava fruit extract prepared by supercritical CO2 extraction. The exact same extract was used for our previous in vitro and in vivo experiments. Blood samples were collected prior to and up to two hours after glucose consumption to quantitate blood glucose and insulin levels. Our results show that, in comparison to the control group, consumption of guava fruit extract resulted in a significantly reduced increase in postprandial glucose response over the basal fasting plasma glucose levels after 30 min (Δ control 2.60 ± 1.09 mmol/L versus Δ intervention 1.96 ± 0.96 mmol/L; p = 0.039) and 90 min (Δ control 0.44 ± 0.74 mmol/L versus Δ intervention -0.18 ± 0.88 mmol/L; p = 0.023). In addition, we observed a slightly reduced, but non-significant insulin secretion (Δ control 353.82 ± 183.31 pmol/L versus Δ intervention 288.43 ± 126.19 pmol/L, p = 0.302). Interestingly, storage time and repeated freeze-thawing operations appeared to negatively influence the efficacy of the applied extract. Several analytical methods (HPLC-MS, GC-MS, and NMR) were applied to identify putative bioactive compounds in the CO2 extract used. We could assign several substances at relevant concentrations including kojic acid (0.33 mg/mL) and 5-hydroxymethylfurfural (2.76 mg/mL). Taken together, this clinical trial and previous in vitro and in vivo experiments confirm the efficacy of our guava fruit extract in inhibiting intestinal glucose resorption, possibly in combination with reduced insulin secretion. Based on these findings, the development of food supplements or functional foods containing this extract appears promising for patients with diabetes and for the prevention of insulin resistance. Trial registration: 415-E/2319/15-2018 (Ethics Commissions of Salzburg).
Project description:BackgroundBetulinic acid (BA), a pentacyclic triterpene glycoside extract from guava (Psidium guajava Linn.) leaves, displays a variety of biological activities which exhibit cancer therapeutic properties associated with cancer growth inhibition in various kinds of human cancer cells including brain, breast, colorectal, cervical, lung and prostate gland. However, the effects on human cholangiocarcinoma cells have not previously been reported. Current study, we evaluated the activity of BA against human cholangiocarcinoma (HuCCA) cells.MethodsThe cytotoxicity analysis was measured by using MTT assay on HuCCA and BHK-21 cells. Analysis of apoptosis was evaluated by using staining with Hoechst 33342 and quantitative real-time PCR.ResultsThe BA (50-800 µg/mL) significantly reduced the viability of HuCCA cells in a dose-dependent action with 50% inhibitory concentration (IC50) of 92.45 µg/mL at 24 h. It also induced apoptosis signaling pathway, such as nuclear chromatin condensation and fragmentation. Quantitative real-time PCR analysis demonstrated that BA increased p53, Bax and caspase-3 expression whilst it decreased Bcl-2 expression in the HuCCA cells in a dose dependent manner.ConclusionBA can inhibit the HuCCA cell viability and induce apoptosis of neoplastic cells. This study indicates that BA has effective treatment for cholangiocarcinoma in vitro. Consequently, BA may be used as a novel therapeutic agent for the treatment of cholangiocarcinoma in the future.
Project description:ScopeKnown pharmacological activities of guava (Psidium guajava) include modulation of blood glucose levels. However, mechanistic details remain unclear in many cases.Methods and resultsThis study investigated the effects of different guava leaf and fruit extracts on intestinal glucose transport in vitro and on postprandial glucose levels in vivo. Substantial dose- and time-dependent glucose transport inhibition (up to 80%) was observed for both guava fruit and leaf extracts, at conceivable physiological concentrations in Caco-2 cells. Using sodium-containing (both glucose transporters, sodium-dependent glucose transporter 1 [SGLT1] and glucose transporter 2 [GLUT2], are active) and sodium-free (only GLUT2 is active) conditions, we show that inhibition of GLUT2 was greater than that of SGLT1. Inhibitory properties of guava extracts also remained stable after digestive juice treatment, indicating a good chemical stability of the active substances. Furthermore, we could unequivocally show that guava extracts significantly reduced blood glucose levels (≈fourfold reduction) in a time-dependent manner in vivo (C57BL/6N mice). Extracts were characterized with respect to their main putative bioactive compounds (polyphenols) using HPLC and LC-MS.ConclusionThe data demonstrated that guava leaf and fruit extracts can potentially contribute to the regulation of blood glucose levels.