Project description:The Ethylene response factor (ERF) belongs to the APETALA2/ethylene response factor (AP2/ERF) superfamily, located at the end of the ethylene signalling pathway, and has important roles in regulating the ethylene-related response genes. Thus, identifying and charactering this transcription factor would be helpful to elucidate ethylene related fruit ripening regulation in Chinese jujube (Ziziphus jujuba Mill.). In the present study, 119 AP2/ERF genes, including 5 Related to ABI3/VPs (RAV), 17 AP2s, 57 ERFs, 39 dehydration-responsive element-binding (DREB) factors and 1 soloist gene, were identified from the jujube genome sequences. Genome localization, gene duplication, phylogenetic relationships and conserved motifs were simultaneously analysed. Using available transcriptomic data, 85 genes with differential transcripts in the flower, leaf and fruit were detected, suggesting a broad regulation of AP2/ERF genes in the growth and development of jujube. Among them, 44 genes were expressed in the fruit. As assessed by quantitative PCR, 15 up- and 23 downregulated genes corresponding to fruit full maturity were found, while in response to 100 μl l-1 ethylene, 6 up- and 16 downregulated genes were generated. By comparing the output, ZjERF54 and DREB39 were found to be the best candidate genes that positively participated in jujube fruit ripening, while ZjERF25 and ZjERF36, which had an ERF-associated amphiphilic repression (EAR) motif, were ripening repressors. These findings help to gain insights into AP2/ERF gene evolution and provide a useful resource to further understand the ethylene regulatory mechanisms underlying Chinese jujube fruit ripening.
Project description:The APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is one of the largest transcription factor (TF) families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and RAV (Related to ABI3/VP). AP2/ERFs are known to play significant roles in various plant processes including growth and development and biotic and abiotic stress responses. Considering this, a comprehensive genome-wide study was conducted in foxtail millet (Setaria italica L.). A total of 171 AP2/ERF genes were identified by systematic sequence analysis and were physically mapped onto nine chromosomes. Phylogenetic analysis grouped AP2/ERF genes into six classes (I to VI). Duplication analysis revealed that 12 (∼7%) SiAP2/ERF genes were tandem repeated and 22 (∼13%) were segmentally duplicated. Comparative physical mapping between foxtail millet AP2/ERF genes and its orthologs of sorghum (18 genes), maize (14 genes), rice (9 genes) and Brachypodium (6 genes) showed the evolutionary insights of AP2/ERF gene family and also the decrease in orthology with increase in phylogenetic distance. The evolutionary significance in terms of gene-duplication and divergence was analyzed by estimating synonymous and non-synonymous substitution rates. Expression profiling of candidate AP2/ERF genes against drought, salt and phytohormones revealed insights into their precise and/or overlapping expression patterns which could be responsible for their functional divergence in foxtail millet. The study showed that the genes SiAP2/ERF-069, SiAP2/ERF-103 and SiAP2/ERF-120 may be considered as potential candidate genes for further functional validation as well for utilization in crop improvement programs for stress resistance since these genes were up-regulated under drought and salinity stresses in ABA dependent manner. Altogether the present study provides new insights into evolution, divergence and systematic functional analysis of AP2/ERF gene family at genome level in foxtail millet which may be utilized for improving stress adaptation and tolerance in millets, cereals and bioenergy grasses.
Project description:The AP2/ERF superfamily, one of the most important transcription factor families, plays crucial roles in response to biotic and abiotic stresses. So far, a comprehensive evolutionary inference of its origination and expansion has not been available. Here, we identified 515 AP2/ERF genes in B. napus, a neo-tetraploid forming ~7500 years ago, and found that 82.14% of them were duplicated in the tetraploidization. A prominent subgenome bias was revealed in gene expression, tissue-specific, and gene conversion. Moreover, a large-scale analysis across plants and alga suggested that this superfamily could have been originated from AP2 family, expanding to form other families (ERF, and RAV). This process was accompanied by duplicating and/or alternative deleting AP2 domain, intragenic domain sequence conversion, and/or by acquiring other domains, resulting in copy number variations, alternatively contributing to functional innovation. We found that significant positive selection occurred at certain critical nodes during the evolution of land plants, possibly responding to changing environment. In conclusion, the present research revealed origination, functional innovation, and evolutionary trajectory of the AP2/ERF superfamily, contributing to understanding their roles in plant stress tolerance.
Project description:BACKGROUND: The AP2/ERF transcription factor, one of the largest gene families in plants, plays a crucial role in the regulation of growth and development, metabolism, and responses to biotic and abiotic stresses. Castor bean (Ricinus communis L., Euphobiaceae) is one of most important non-edible oilseed crops and its seed oil is broadly used for industrial applications. The available genome provides a great chance to identify and characterize the global information on AP2/ERF transcription factors in castor bean, which might provide insights in understanding the molecular basis of the AP2/ERF family in castor bean. RESULTS: A total of 114 AP2/ERF transcription factors were identified based on the genome in castor bean. According to the number of the AP2/ERF domain, the conserved amino acid residues within AP2/ERF domain, the conserved motifs and gene organization in structure, and phylogenetical analysis, the identified 114 AP2/ERF transcription factors were characterized. Global expression profiles among different tissues using high-throughput sequencing of digital gene expression profiles (DGEs) displayed diverse expression patterns that may provide basic information in understanding the function of the AP2/ERF gene family in castor bean. CONCLUSIONS: The current study is the first report on identification and characterization of the AP2/ERF transcription factors based on the genome of castor bean in the family Euphobiaceae. Results obtained from this study provide valuable information in understanding the molecular basis of the AP2/ERF family in castor bean.
Project description:BackgroundAs one of the largest transcription factor families in plants, the APETALA2/Ethylene-Responsive Factor (AP2/ERF) superfamily is involved in various biological processes and plays significant roles in plant growth, development and responses to various stresses. Although identification and characterization of AP2/ERF superfamily genes have been accomplished in many plant species, very little is known regarding the structure and function of AP2/ERF genes in maize.ResultsIn this study, a total of 214 genes encoding ZmAP2/ERF proteins with complete AP2/ERF domain were eventually identified according to the AGPv4 version of the maize B73 genome. Based on the number of AP2/ERF domain and similarities of amino acid sequences among AP2/ERF proteins from Arabidopsis, rice and maize, all 214 putative ZmAP2/ERF proteins were categorized into three distinct families, including the AP2 family (44), the ERF family (166) and the RAV family (4), respectively. Among them, the ERF family was further subdivided into two diverse subfamilies, including the DREB and ERF subfamilies with 61 and 105 members, respectively. Further, based on phylogenetic analysis, the members of DREB and ERF subfamilies were subdivided into four (Group I-IV) and eight (Group V-XII) groups, respectively. The characteristics of exon-intron structure of these putative ZmAP2/ERF genes and conserved protein motifs of their encoded ZmAP2/ERF proteins were also presented respectively, which was in accordance with the results of group classification. Promoter analysis suggested that ZmAP2/ERF genes shared many stress- and hormone-related cis-regulatory elements. Gene duplication and synteny analysis revealed that tandem or segmental duplication and purifying selection might play significant roles in evolution and functional differentiation of AP2/ERF superfamily genes among three various gramineous species (maize, rice and sorghum). Using RNA-seq data, transcriptome analysis indicated that the majority of ZmAP2/ERF genes displayed differential expression patterns at different developmental stages of maize. In addition, the following analyses of co-expression network among ZmAP2/ERF genes and protein protein interaction between ZmAP2 and ZmERF proteins further enabled us to understand the regulatory relationship among members of the AP2/ERF superfamily in maize. Furthermore, by quantitative real-time PCR analysis, twenty-seven selected ZmAP2/ERF genes were further confirmed to respond to three different abiotic stresses, suggesting their potential roles in various abiotic stress responses. Collectively, these results revealed that these ZmAP2/ERF genes play essential roles in abiotic stress tolerance.ConclusionsTaken together, the present study will serve to present an important theoretical basis for further exploring the function and regulatory mechanism of ZmAP2/ERF genes in the growth, development, and adaptation to abiotic stresses in maize.
Project description:BACKGROUND: Rubber tree (Hevea brasiliensis) laticifers are the source of natural rubber. Rubber production depends on endogenous and exogenous ethylene (ethephon). AP2/ERF transcription factors, and especially Ethylene-Response Factors, play a crucial role in plant development and response to biotic and abiotic stresses. This study set out to sequence transcript expressed in various tissues using next-generation sequencing and to identify AP2/ERF superfamily in the rubber tree. RESULTS: The 454 sequencing technique was used to produce five tissue-type transcript libraries (leaf, bark, latex, embryogenic tissues and root). Reads from all libraries were pooled and reassembled to improve mRNA lengths and produce a global library. One hundred and seventy-three AP2/ERF contigs were identified by in silico analysis based on the amino acid sequence of the conserved AP2 domain from the global library. The 142 contigs with the full AP2 domain were classified into three main families (20 AP2 members, 115 ERF members divided into 11 groups, and 4 RAV members) and 3 soloist members. Fifty-nine AP2/ERF transcripts were found in latex. Alongside the microRNA172 already described in plants, eleven additional microRNAs were predicted to inhibit Hevea AP2/ERF transcripts. CONCLUSIONS: Hevea has a similar number of AP2/ERF genes to that of other dicot species. We adapted the alignment and classification methods to data from next-generation sequencing techniques to provide reliable information. We observed several specific features for the ERF family. Three HbSoloist members form a group in Hevea. Several AP2/ERF genes highly expressed in latex suggest they have a specific function in Hevea. The analysis of AP2/ERF transcripts in Hevea presented here provides the basis for studying the molecular regulation of latex production in response to abiotic stresses and latex cell differentiation.
Project description:BackgroundAs one of the largest transcription factor families in plants, AP2/ERF gene superfamily plays important roles in plant growth, development, fruit ripening and biotic and abiotic stress responses. Despite the great progress has been made in kiwifruit genomic studies, little research has been conducted on the AP2/ERF genes of kiwifruit. The increasing kiwifruit genome resources allowed us to reveal the tissue expression profiles of AP2/ERF genes in kiwifruit on a genome-wide basis.ResultsIn present study, a total of 158 AP2/ERF genes in A. eriantha were identified. All genes can be mapped on the 29 chromosomes. Phylogenetic analysis divided them into four main subfamilies based on the complete protein sequences. Additionally, our results revealed that the same subfamilies contained similar gene structures and conserved motifs. Ka/Ks calculation indicated that AP2/ERF gene family was undergoing a strong purifying selection and the evolutionary rates were slow. RNA-seq showed that the AP2/ERF genes were expressed differently in different flower development stages and 56 genes were considered as DEGs among three contrasts. Moreover, qRT-PCR suggested partial genes showed significant expressions as well, suggesting they could be key regulators in flower development in A. eriantha. In addition, two genes (AeAP2/ERF061, AeAP2/ERF067) had abundant transcription level based on transcriptomes, implying that they may play a crucial role in plant flower development regulation and flower tissue forming.ConclusionsWe identified AP2/ERF genes and demonstrated their gene structures, conserved motifs, and phylogeny relationships of AP2/ERF genes in two related species of kiwifruit, A. eriantha and A. chinensis, and their potential roles in flower development in A. eriantha. Such information would lay the foundation for further functional identification of AP2/ERF genes involved in kiwifruit flower development.
Project description:Juglans mandshurica has strong freezing resistance, surviving temperatures as low as -40 °C, making it an important freeze tolerant germplasm resource of the genus Juglans. APETALA2/ethylene responsive factor (AP2/ERF) is a plant-specific superfamily of transcription factors that regulates plant development, growth, and the response to biotic and abiotic stress. In this study, phylogenetic analysis was used to identify 184 AP2/ERF genes in the J. mandshurica genome, which were classified into five subfamilies (JmAP2, JmRAV, JmSoloist, JmDREB, and JmERF). A significant amount of discordance was observed in the 184 AP2/ERF genes distribution of J. mandshurica throughout its 16 chromosomes. Duplication was found in 14 tandem and 122 segmental gene pairs, which indicated that duplications may be the main reason for JmAP2/ERF family expansion. Gene structural analysis revealed that 64 JmAP2/ERF genes contained introns. Gene evolution analysis among Juglandaceae revealed that J. mandshurica is separated by 14.23 and 15 Mya from Juglans regia and Carya cathayensis, respectively. Based on promoter analysis in J. mandshurica, many cis-acting elements were discovered that are related to light, hormones, tissues, and stress response processes. Proteins that may contribute to cold resistance were selected for further analysis and were used to construct a cold regulatory network based on GO annotation and JmAP2/ERF protein interaction network analysis. Expression profiling using qRT-PCR showed that 14 JmAP2/ERF genes were involved in cold resistance, and that seven and five genes were significantly upregulated under cold stress in female flower buds and phloem tissues, respectively. This study provides new light on the role of the JmAP2/ERF gene in cold stress response, paving the way for further functional validation of JmAP2/ERF TFs and their application in the genetic improvement of Juglans and other tree species.