Project description:PurposeTo map the phosphoproteome and identify changes in the phosphorylation patterns in the HIV-infected and uninfected brain.Experimental designParietal cortex from individuals with and without HIV infection were lysed and trypsinized. The peptides were labeled with iTRAQ reagents, combined, phospho-enriched by titanium dioxide chromatography, and analyzed by LC-MS/MS with high resolution.ResultsOur phosphoproteomic workflow resulted in the identification of 112 phosphorylated proteins and 17 novel phosphorylation sites in all the samples that were analyzed. The phosphopeptide sequences were searched for kinase substrate motifs, which revealed potential kinases involved in important signaling pathways. The site-specific phosphopeptide quantification showed that peptides from neurofilament medium polypeptide, myelin basic protein, and 2'-3'-cyclic nucleotide-3' phosphodiesterase have relatively higher phosphorylation levels during HIV infection.Conclusions and clinical relevanceThis study has enriched the global phosphoproteome knowledge of the human brain by detecting novel phosphorylation sites on neuronal proteins and identifying differentially phosphorylated brain proteins during HIV infection. Kinases that lead to unusual phosphorylations could be therapeutic targets for the treatment of HIV-associated neurocognitive disorders.
Project description:BackgroundDrought stress during grain development causes significant yield loss in cereal production. The phosphorylated modification of starch granule-binding proteins (SGBPs) is an important mechanism regulating wheat starch biosynthesis. In this study, we performed the first proteomics and phosphoproteomics analyses of SGBPs in elite Chinese bread wheat (Triticum aestivum L.) cultivar Jingdong 17 under well-watered and water-stress conditions.ResultsWater stress treatment caused significant reductions in spike grain numbers and weight, total starch and amylopectin content, and grain yield. Two-dimensional gel electrophoresis revealed that the quantity of SGBPs was reduced significantly by water-deficit treatment. Phosphoproteome characterization of SGBPs under water-deficit treatment demonstrated a reduced level of phosphorylation of main starch synthesis enzymes, particularly for granule-bound starch synthase (GBSS I), starch synthase II-a (SS II-a), and starch synthase III (SS III). Specifically, the Ser34 site of the GBSSI protein, the Tyr358 site of SS II-a, and the Ser837 site of SS III-a exhibited significant less phosphorylation under water-deficit treatment than well-watered treatment. Furthermore, the expression levels of several key genes related with starch biosynthesis detected by qRT-PCR were decreased significantly at 15 days post-anthesis under water-deficit treatment. Immunolocalization showed a clear movement of GBSS I from the periphery to the interior of starch granules during grain development, under both water-deficit and well-watered conditions.ConclusionsOur results demonstrated that the reduction in gene expression or transcription level, protein expression and phosphorylation levels of starch biosynthesis related enzymes under water-deficit conditions is responsible for the significant decrease in total starch content and grain yield.
Project description:AimWe aimed to assess the role of FGF21 in metabolic dysfunction-associated steatotic liver disease (MASLD) at a multi-scale level.MethodsWe used human MASLD pathology samples for FGF21 gene expression analyses (qPCR and RNAseq), serum to measure circulating FGF21 levels and DNA for genotyping the FGF21 rs838133 variant in both estimation and validation cohorts. A hepatocyte-derived cell line was exposed to free fatty acids at different timepoints. Finally, C57BL/6J mice were fed a high-fat and choline-deficient diet (CDA-HFD) for 16 weeks to assess hepatic FGF21 protein expression and FGF21 levels by ELISA.ResultsA significant upregulation in FGF21 mRNA expression was observed in the liver analysed by both qPCR (fold change 5.32 ± 5.25 vs. 0.59 ± 0.66; p = 0.017) and RNA-Seq (3.5 fold; FDR: 0.006; p < 0.0001) in MASLD patients vs. controls. Circulating levels of FGF21 were increased in patients with steatohepatitis vs. bland steatosis (386.6 ± 328.9 vs. 297.9 ± 231.5 pg/mL; p = 0.009). Besides, sex, age, A-allele from FGF21, GG genotype from PNPLA3, ALT, type 2 diabetes mellitus and BMI were independently associated with MASH and significant fibrosis in both estimation and validation cohorts. In vitro exposure of Huh7.5 cells to high concentrations of free fatty acids (FFAs) resulted in overexpression of FGF21 (p < 0.001). Finally, Circulating FGF21 levels and hepatic FGF21 expression were found to be significantly increased (p < 0.001) in animals under CDA-HFD.ConclusionsHepatic and circulating FGF21 expression was increased in MASH patients, in Huh7.5 cells under FFAs and in CDA-HFD animals. The A-allele from the rs838133 variant was also associated with an increased risk of steatohepatitis and significant and advanced fibrosis in MASLD patients.
Project description:Sida cordifolia is a medicinal shrub that is conventionally used in the Indian system of medicine;however, the genes contributing to its medicinal properties have been minimally explored, thus limiting its application. High-throughputsequencing and Liquid Chromatography with tandem mass spectrometry(LC-MS/MS) technologies were applied to unravel the medicinally important bioactive compounds. As a result, transcriptomic sequencing generated more than 12 GB of clean data, and 187,215 transcripts were obtained by de novoassembly. These transcripts were broadly classified into 20 classes, based on the gene ontology classification, and 6551 unigenes were annotated using Kyoto Encyclopedia of Genes and Genomes (KEGG) database with more than 142 unigenes involved in the biosynthesis of secondary metabolites. LC-MS/MS analysis of three tissues of Sida cordifolia revealed that acacetin and procyanidin are some important metabolites identified thatcontribute to its medicinal value. Several key enzymes witha crucial role in phenylpropanoid and flavonoid biosynthetic pathways were identified, especially phenylalanine ammonia lyase, which might be an important rate-limiting enzyme. Real-Time Quantitative Reverse Transcription Polymerase chain reaction (qRT-PCR) analysis revealed enzymes, such as Phenylalanine ammonia lyase (PAL), Cinnamyl alcohol dehydrogenase 1 (CAD), Cinnamoyl-CoA reductase 1 (CF1) and Trans cinnamate 4-monooxygenase(TCM), which were predominantly expressed in root compared to leaf and stem tissue. The study provides a speculative insight for the screening of active metabolites and metabolic engineering in Sida cordifolia.
Project description:Drought stress is a major abiotic stress affecting plant growth and development. In this study, we performed the first dynamic phosphoproteome analysis of Brachypodium distachyon L. seedling leaves under drought stress for different times. A total of 4924 phosphopeptides, contained 6362 phosphosites belonging to 2748 phosphoproteins. Rigorous standards were imposed to screen 484 phosphorylation sites, representing 442 unique phosphoproteins. Comparative analyses revealed significant changes in phosphorylation levels at 0, 6, and 24 h under drought stress. The most phosphorylated proteins and the highest phosphorylation level occurred at 6 h. Venn analysis showed that the up-regulated phosphopeptides at 6 h were almost two-fold those at 24 h. Motif-X analysis identified the six motifs: [sP], [Rxxs], [LxRxxs], [sxD], [sF], and [TP], among which [LxRxxs] was also previously identified in B. distachyon. Results from molecular function and protein-protein interaction analyses suggested that phosphoproteins mainly participate in signal transduction, gene expression, drought response and defense, photosynthesis and energy metabolism, and material transmembrane transport. These phosphoproteins, which showed significant changes in phosphorylation levels, play important roles in signal transduction and material transmembrane transport in response to drought conditions. Our results provide new insights into the molecular mechanism of this plant's abiotic stress response through phosphorylation modification.
Project description:BackgroundInonotus obliquus is an important edible and medicinal mushroom that was shown to have many pharmacological activities in preclinical trials, including anti-inflammatory, antitumor, immunomodulatory, and antioxidant effects. However, the biosynthesis of these pharmacological components has rarely been reported. The lack of genomic information has hindered further molecular characterization of this mushroom.ResultsIn this study, we report the genome of I. obliquus using a combined high-throughput Illumina NovaSeq with Oxford Nanopore PromethION sequencing platform. The de novo assembled 38.18 Mb I. obliquus genome was determined to harbor 12,525 predicted protein-coding genes, with 81.83% of them having detectable sequence similarities to others available in public databases. Phylogenetic analysis revealed the close evolutionary relationship of I. obliquus with Fomitiporia mediterranea and Sanghuangporus baumii in the Hymenochaetales clade. According to the distribution of reproduction-related genes, we predict that this mushroom possesses a tetrapolar heterothallic reproductive system. The I. obliquus genome was found to encode a repertoire of enzymes involved in carbohydrate metabolism, along with 135 cytochrome P450 proteins. The genome annotation revealed genes encoding key enzymes responsible for secondary metabolite biosynthesis, such as polysaccharides, polyketides, and terpenoids. Among them, we found four polyketide synthases and 20 sesquiterpenoid synthases belonging to four more types of cyclization mechanism, as well as 13 putative biosynthesis gene clusters involved in terpenoid synthesis in I. obliquus.ConclusionsTo the best of our knowledge, this is the first reported genome of I. obliquus; we discussed its genome characteristics and functional annotations in detail and predicted secondary metabolic biosynthesis-related genes, which provides genomic information for future studies on its associated molecular mechanism.
Project description:The biosynthesis of plant secondary metabolites is associated with morphological and metabolic differentiation. As a consequence, gene expression profiles can change drastically, and primary and secondary metabolites, including intermediate and end-products, move dynamically within and between cells. However, little is known about the molecular mechanisms underlying differentiation and transport mechanisms. In this study, we performed a transcriptome analysis of Petunia axillaris subsp. parodii, which produces various volatiles in its corolla limbs and emits metabolites to attract pollinators. RNA-sequencing from leaves, buds, and limbs identified 53,243 unigenes. Analysis of differentially expressed genes, combined with gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, showed that many biological processes were highly enriched in limbs. These included catabolic processes and signaling pathways of hormones, such as gibberellins, and metabolic pathways, including phenylpropanoids and fatty acids. Moreover, we identified five transporter genes that showed high expression in limbs, and we performed spatiotemporal expression analyses and homology searches to infer their putative functions. Our systematic analysis provides comprehensive transcriptomic information regarding morphological differentiation and metabolite transport in the Petunia flower and lays the foundation for establishing the specific mechanisms that control secondary metabolite biosynthesis in plants.
Project description:Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD 'human proximity score' to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research.
Project description:PhosphoSitePlus(®) (PSP, http://www.phosphosite.org/), a knowledgebase dedicated to mammalian post-translational modifications (PTMs), contains over 330,000 non-redundant PTMs, including phospho, acetyl, ubiquityl and methyl groups. Over 95% of the sites are from mass spectrometry (MS) experiments. In order to improve data reliability, early MS data have been reanalyzed, applying a common standard of analysis across over 1,000,000 spectra. Site assignments with P > 0.05 were filtered out. Two new downloads are available from PSP. The 'Regulatory sites' dataset includes curated information about modification sites that regulate downstream cellular processes, molecular functions and protein-protein interactions. The 'PTMVar' dataset, an intersect of missense mutations and PTMs from PSP, identifies over 25,000 PTMVars (PTMs Impacted by Variants) that can rewire signaling pathways. The PTMVar data include missense mutations from UniPROTKB, TCGA and other sources that cause over 2000 diseases or syndromes (MIM) and polymorphisms, or are associated with hundreds of cancers. PTMVars include 18 548 phosphorlyation sites, 3412 ubiquitylation sites, 2316 acetylation sites, 685 methylation sites and 245 succinylation sites.