Project description:Inorganic diatomite nanoparticles (DNPs) have gained increasing interest as drug delivery systems due to their porous structure, long half-life, thermal and chemical stability. Gold nanoparticles (AuNPs) provide DNPs with intriguing optical features that can be engineered and optimized for sensing and drug delivery applications. In this work, we combine DNPs with gelatin stabilized AuNPs for the development of an optical platform for Galunisertib delivery. To improve the DNP loading capacity, the hybrid platform is capped with gelatin shells of increasing thicknesses. Here, for the first time, full optical modeling of the hybrid system is proposed to monitor both the gelatin generation, degradation, and consequent Galunisertib release by simple spectroscopic measurements. Indeed, the shell thickness is optically estimated as a function of the polymer concentration by exploiting the localized surface plasmon resonance shifts of AuNPs. We simultaneously prove the enhancement of the drug loading capacity of DNPs and that the theoretical modeling represents an efficient predictive tool to design polymer-coated nanocarriers.
Project description:Breast cancer is characterized by the uncontrolled proliferation of breast epithelial cells under the action of a variety of carcinogens. Although HER2-inhibitors were currently applied for HER2-positive breast cancer patients, they didn't work for patients with resistance to HER2-targeted anti-cancer drugs. In this work, we prepared novel CuS@BSA-NB2 nanoparticles (NPs) for breast cancer photothermal therapy (PTT). The NPs had good biocompatibility due to the Bovine Serum Albumin (BSA) encapsulating and excellent targeting to HER2 because of nanobody 2 (NB2). Under 808 nm laser irradiation, CuS@BSA-NB2 NPs had high photothermal conversion efficiency and photothermal stability. Meanwhile, we constructed a stable cell line of MDA-MB-231/HER2 with a high expression of HER2 protein. Immunofluorescence and ICP-MS assays showed that CuS@BSA-NB2 NPs can be specifically enriched and be ingested in MDA-MB-231/HER2 cells. Furthermore, CuS@BSA-NB2 NPs had shown a more significant photothermal treatment effect than CuS@BSA under certain treatment conditions for MDA-MB-231/HER2. In addition, the cytotoxicity assay demonstrated that CuS@BSA-NB2 NPs had a low toxicity for MDA-MB-231/HER2 cells. The above results suggested that CuS@BSA-NB2 NPs were great photothermal therapeutic agents to reduce the malignant proliferation of breast epithelial cells and have potential for breast cancer therapy.
Project description:The objective of this study was to evaluate the in vivo application and photothermal ablation effects and mechanism of copper sulfide nanoparticles (CuS NPs) in hepatocellular carcinoma (HCC). Sheet-like CuS-BSA NPs with a particle size of 30 nm were synthesized using bovine serum albumin (BSA) as a biological modifier, and were physically characterized. To provide a reference range for the biosafety dose of CuS-BSA NPs, 36 male Kunming mice were randomly assigned into six groups. Different one-time doses of CuS-BSA NPs were injected via tail vein injection, and the potential damages of liver, kidney and spleen were observed 14 days later. To evaluate the in vivo photothermal effect of CuS-BSA NPs, 48 male Kunming mice were used to establish the H22 hepatoma-bearing mouse model and were randomly assigned into six groups. CuS-BSA NPs (600 μg/kg) were injected via tail vein or intratumoral injection. Irradiations were performed 30 min after injection, with a 980 nm near-infrared laser (2.0 W/cm2) for 10 min once a week for 3 weeks. The results indicated that the CuS-BSA NPs had good dispersibility in three different solvents and had a strong absorption peak at 980 nm. The heating curves demonstrated that the photothermal effects of CuS-BSA NPs aqueous solution exhibited concentration dependence and power density dependence. In the in vivo experiment, when the doses of CuS-BSA NPs were in the range of 1800–7,200 μg/kg, the thymus index and spleen index of mice were not significantly different from those of the control group, and the structures of liver, kidney and spleen were intact without remarkable pathological changes. A lower dose of CuS-BSA NPs (600 μg/kg) could effectively inhibit tumor growth in H22 hepatoma-bearing mice at 980 nm NIR. Moreover, under the near-infrared laser irradiation, both in the tail vein injection group and the intratumoral injection group, a large area of necrosis in the tumor tissue, as well as the up-regulation of apoptotic proteins including cleaved caspase-3 and cleaved caspase-9 were observed. CuS-BSA NPs are promising photothermal agents in the photothermal therapy of cancer.
Project description:In advanced cancer therapy, the combinational therapeutic effect of photothermal therapy (PTT) using near-infrared (NIR) light-responsive nanoparticles (NPs) and anti-cancer drug delivery-mediated chemotherapy has been widely applied. In the present study, using a facile, low-cost, and solution-based method, we developed and synthesized fucoidan, a natural polymer isolated from seaweed that has demonstrated anti-cancer effect, and coated NPs with it as an ideal candidate in chemo-photothermal therapy against cancer cells. Fucoidan-coated copper sulfide nanoparticles (F-CuS) act not only as a nanocarrier to enhance the intracellular delivery of fucoidan but also as a photothermal agent to effectively ablate different cancer cells (e.g., HeLa, A549, and K562), both in vitro and in vivo, with the induction of apoptosis under 808 nm diode laser irradiation. These results point to the potential usage of F-CuS in treating human cancer.
Project description:In this study, laser-induced in situ amorphization (i.e., amorphization inside the final dosage form) of the model drug celecoxib (CCX) with six different polymers was investigated. The drug-polymer combinations were studied with regard to the influence of (i) the physicochemical properties of the polymer, e.g., the glass transition temperature (Tg) and (ii) the drug-polymer solubility on the rate and degree of in situ drug amorphization. Compacts were prepared containing 30 wt% CCX, 69.25 wt% polymer, 0.5 wt% lubricant, and 0.25 wt% plasmonic nanoparticles (PNs) and exposed to near-infrared laser radiation. Upon exposure to laser radiation, the PNs generated heat, which allowed drug dissolution into the polymer at temperatures above its Tg, yielding an amorphous solid dispersion. It was found that in situ drug amorphization was possible for drug-polymer combinations, where the temperature reached during exposure to laser radiation was above the onset temperature for a dissolution process of the drug into the polymer, i.e., TDStart. The findings of this study showed that the concept of laser-induced in situ drug amorphization is applicable to a range of polymers if the drug is soluble in the polymer and temperatures during the process are above TDStart.
Project description:Due to its non-invasive and highly effective characteristics, radiotherapy has attracted significant interest in cancer treatment. However, radioresistance of solid tumors caused by a unique tumor microenvironment diminishes the therapeutic effect of cancer radiotherapy. To address this issue, we developed a nanoplatform for tumor-specific targeting to improve radiotherapy. Specifically, hollow CuS nanoparticles were decorated with the platelet cell membrane (PC), endowing this nanoplatform with the therapeutic property of navigating to the tumor region for glutathione (GSH)-depletion photothermal therapy. It was discovered that mild photothermal therapy mediated by PC ameliorated hypoxia in the tumor microenvironment. Meanwhile, GSH, which contributes to repairing radiotherapy-induced DNA double-strand breaks, was depleted by PC in an acidic microenvironment. Therefore, radioresistance could be diminished while cancer cell self-repair was prevented. At therapeutic doses, PC nanoparticles have negligible toxic effects on normal tissues. PC demonstrates promise for both in vivo and in vitro radiosensitization due to its GSH-depletion, photothermal efficiency, and tumor-specific properties.
Project description:Copper sulfide nanoparticles (CuS NPs) have been reported as a single-compartment theranostic nanosystem to visualize and treat tumors simultaneously. However, few studies have investigated the in vivo tumor-targeted delivery of this class of nanoparticles. In this study, we introduced a tumor-specific targeting ligand, folic acid (FA), onto the surface of CuS NPs as a model system to demonstrate the feasibility of actively targeted CuS NPs for positron emission tomography (PET) imaging and PET image-guided photothermal therapy (PTT). A one-pot synthetic method was used for introducing FA to CuS NPs to yield FA-CuS NPs. Biodistribution studies in mice bearing folate receptor-expressing KB tumor showed significantly higher tumor uptake of FA-CuS NPs than non-targeted polyethylene glycol (PEG)-coated PEG-CuS NPs after intravenous injection. Moreover, tumor uptake of FA-CuS NPs could be effectively blocked by free FA. Biodistribution and clearance of 64Cu-labeled FA-CuS NPs (FA-[64Cu]CuS NPs) could be readily visualized by microPET (μPET), which confirmed a significantly higher level of tumor uptake of FA-[64Cu]CuS NPs than non-targeted PEG-[64Cu]CuS NPs. μPET image-guided PTT with FA-CuS NPs mediated substantially greater tumor damage compared with PTT mediated by PEG-CuS NPs. Thus, FA-CuS NPs is a promising candidate for PTT of folate receptor-positive tumors.
Project description:Photothermal conversion efficiency (η) plays a crucial role in selecting suitable gold nanoparticles for photothermal therapeutic applications. The photothermal efficiency depends on the material used for the nanoparticles as well as their various parameters, such as size and shape. By maximizing the light-to-heat conversion efficiency (η), one can reduce the concentration of nanoparticle drugs for photothermal cancer treatment and apply lower laser power to irradiate the tumor. In our study, we explored a new hybrid plasmonic conjugate for theranostic (therapy + diagnostic) applications. We conjugated PEG-functionalized 20 nm gold nanospheres with cyanine IR dyes via a PEG linker. The resulting conjugates exhibited significantly enhanced photothermal properties compared with bare nanoparticles. We experimentally showed that a proposed new hybrid plasmonic conjugate can achieve almost four times larger conversion efficiency (47.7%) than 20 nm gold nanospheres (12%). The enhanced photothermal properties of these gold conjugates can provide the required temperature for the photothermal treatment of cancer cells with lower concentrations of gold nanoparticles injected in the body as well as with lower applied incident laser power density. Moreover, the improved photothermal properties of the conjugates can be explained by a synergistic effect that has not been observed in the past. This effect results from the coupling between the metal nanosphere and the organic dye.
Project description:In most drug delivery systems the clinician does not have control over the location of drug delivery after the therapeutic has been administered. As the location of the tumor mass is often known in many patients, a therapy system which enables the clinician to play an active role in nanomedicine localization would provide an advantage. Here, we show a new approach wherein a laser can be used to tag tumor tissue and enhance the delivery of targeted polymer therapeutics. Plasmonic gold nanorods are delivered to the cancerous tissue and heated by a laser to promote a targetable, hyperthermic response. Concurrent administration of a heat shock targeted polymer therapeutic thereby enhances site specific delivery.
Project description:Viral nanoparticles (VNPs) encompass a diverse array of naturally occurring nanomaterials derived from plant viruses, bacteriophages, and mammalian viruses. The application and development of VNPs and their genome-free versions, the virus-like particles (VLPs), for nanomedicine is a rapidly growing. VLPs can encapsulate a wide range of active ingredients as well as be genetically or chemically conjugated to targeting ligands to achieve tissue specificity. VLPs are manufactured through scalable fermentation or molecular farming, and the materials are biocompatible and biodegradable. These properties have led to a wide range of applications, including cancer therapies, immunotherapies, vaccines, antimicrobial therapies, cardiovascular therapies, gene therapies, as well as imaging and theranostics. The use of VLPs as drug delivery agents is evolving, and sufficient research must continuously be undertaken to translate these therapies to the clinic. This review highlights some of the novel research efforts currently underway in the VNP drug delivery field in achieving this greater goal.