Project description:Coronary CT angiography (CCTA) demonstrated high diagnostic accuracy for detecting coronary artery disease (CAD) and a key role in the management of patients with low-to-intermediate pretest likelihood of CAD. However, the clinical information provided by this noninvasive method is still regarded insufficient in patients with diffuse and complex CAD and for planning percutaneous coronary intervention (PCI) and surgical revascularization procedures. On the other hand, technology advancements have recently shown to improve CCTA diagnostic accuracy in patients with diffuse and calcific stenoses. Moreover, stress CT myocardial perfusion imaging (CT-MPI) and fractional flow reserve derived from CCTA (CT-FFR) have been introduced in clinical practice as new tools for evaluating the functional relevance of coronary stenoses, with the possibility to overcome the main CCTA drawback, i.e. anatomical assessment only. The potential value of CCTA to plan and guide interventional procedures lies in the wide range of information it can provide: a) detailed evaluation of plaque extension, volume and composition; b) prediction of procedural success of CTO PCI using scores derived from CCTA; c) identification of coronary lesions requiring additional techniques (e.g., atherectomy and lithotripsy) to improve stent implantation success by assessing calcium score and calcific plaque distribution; d) assessment of CCTA-derived Syntax Score and Syntax Score II, which allows to select the mode of revascularization (PCI or CABG) in patients with complex and multivessel CAD. The aim of this Consensus Document is to review and discuss the available data supporting the role of CCTA, CT-FFR and stress CT-MPI in the preprocedural and possibly intraprocedural planning and guidance of myocardial revascularization interventions.
Project description:Therapy advice based on dual-source computed tomography (DSCT) in comparison with coronary angiography (CAG) was investigated and the results evaluated after 1-year follow-up. Thirty-three consecutive patients (mean age 61.9 years) underwent DSCT and CAG and were evaluated independently. In an expert reading (the "gold standard"), CAG and DSCT examinations were evaluated simultaneously by an experienced radiologist and cardiologist. Based on the presence of significant stenosis and current guidelines, therapy advice was given by all readers blinded from the results of other readings and clinical information. Patients were treated based on a multidisciplinary team evaluation including all clinical information. In comparison with the gold standard, CAG had a higher specificity (91%) and positive predictive value (PPV) (95%) compared with DSCT (82% and 91%, respectively). DSCT had a higher sensitivity (96%) and negative predictive value (NPV) (89%) compared with CAG (91% and 83%, respectively). The DSCT-based therapy advice did not lead to any patient being denied the revascularization they needed according to the multidisciplinary team evaluation. During follow-up, two patients needed additional revascularization. The high NPV for DSCT for revascularization assessment indicates that DSCT could be safely used to select patients benefiting from medical therapy only.
Project description:IntroductionDifferent mechanisms may underlie cryptogenic stroke, including subclinical atrial fibrillation (AF), nonstenotic carotid plaques (NCP), and aortic arch atherosclerosis (AAA). In a cohort of cryptogenic stroke patients, we aimed to: (1) evaluate the prevalence of subclinical AF, NCP, and AAA, and reclassify the etiology accordingly; (2) compare the clinical features of patients with reclassified etiology with those with confirmed cryptogenic stroke.MethodsData of patients hospitalized for cryptogenic stroke between January 2018 and February 2021 were retrospectively analyzed. Patients were included if they received implantable cardiac monitoring (ICM) to detect subclinical AF. Baseline computed tomography angiography (CTA) was re-evaluated to assess NCP and AAA. Since aortic plaques with ulceration/intraluminal thrombus were considered pathogenetic during the initial workup, only patients with milder AAA were included. Stroke etiology was reclassified as "cardioembolic", "atherosclerotic", or "mixed" based on the detection of AF and NCP/AAA. Patients with "true cryptogenic" stroke (no AF, ipsilateral NCP, or AAA detected) were compared with those with reclassified etiology.ResultsAmong 63 patients included, 21 (33%) were diagnosed with AF (median follow-up time of 15 months), 12 (19%) had ipsilateral NCP, and 6 (10%) had AAA. Stroke etiology was reclassified in 30 patients (48%): cardioembolic in 14 (22%), atherosclerotic in 9 (14%), and mixed in 7 (11%). Patients with true cryptogenic stroke were younger compared to those with reclassified etiology (p = 0.001).DiscussionOne or more potential covert stroke sources can be recognized in half of the patients with a cryptogenic stroke through long-term cardiac monitoring and focused CTA re-assessment.
Project description:Little is known about tissue characterization of cardiac tumors by dedicated cardiac computed tomography (CT) protocols in pediatric patients. We report using arterial and delayed CT acquisitions to characterize a large left ventricular free wall tumor in a 12-year-old female with congenital mitral insufficiency and an automatic implantable cardioverter defibrillator. (Level of Difficulty: Intermediate.).
Project description:Stress cardiac MRI and stress computed tomography (CT) perfusion are relatively new, noninvasive cardiovascular stress-testing modalities. Both of these tests have undergone rapid technical improvements. Data from randomized controlled trials in stress cardiac MRI are becoming gradually incorporated into cardiovascular clinical practice, not only to assess physiological significance of coronary artery disease, but also to provide prognostic information. As CT perfusion protocols become more uniform with adequate handling of artifacts and decreasing radiation exposure with combined CT coronary angiography/CT perfusion imaging, it has the potential to become a comprehensive diagnostic test.
Project description:INTRODUCTION:Anatomic stenosis evaluation on coronary CT angiography (CCTA) lacks specificity in indicating the functional significance of a stenosis. Recent developments in CT techniques (including dual-layer spectral detector CT [SDCT] and static stress CT perfusion [CTP]) and image analyses (including fractional flow reserve [FFR] derived from CCTA images [FFRCT] and deep learning analysis [DL]) are potential strategies to increase the specificity of CCTA by combining both anatomical and functional information in one investigation. The aim of the current study is to assess the diagnostic performance of (combinations of) SDCT, CTP, FFRCT and DL for the identification of functionally significant coronary artery stenosis. METHODS AND ANALYSIS:Seventy-five patients aged 18 years and older with stable angina and known coronary artery disease and scheduled to undergo clinically indicated invasive FFR will be enrolled. All subjects will undergo the following SDCT scans: coronary calcium scoring, static stress CTP, rest CCTA and if indicated (history of myocardial infarction) a delayed enhancement acquisition. Invasive FFR of ≤0.80, measured within 30 days after the SDCT scans, will be used as reference to indicate a functionally significant stenosis. The primary study endpoint is the diagnostic performance of SDCT (including CTP) for the identification of functionally significant coronary artery stenosis. Secondary study endpoint is the diagnostic performance of SDCT, CTP, FFRCT and DL separately and combined for the identification of functionally significant coronary artery stenosis. ETHICS AND DISSEMINATION:Ethical approval was obtained. All subjects will provide written informed consent. Study findings will be disseminated through peer-reviewed conference presentations and journal publications. TRIAL REGISTRATION NUMBER:NCT03139006; Pre-results.
Project description:BackgroundThe relationship between the characteristics of cardiac implantable electronic device (CIED) leads and subclinical cardiac perforations remains unclear. This study aimed to evaluate the incidence of subclinical cardiac perforation among various CIED leads using cardiac computed tomography (CT).MethodsA total of 271 consecutive patients with 463 CIED leads, who underwent cardiac CT after CIED implantation, were included in this retrospective observational study. Cardiac CT images were reviewed by one radiologist and two cardiologists. Subclinical perforation was defined as traversal of the lead tip past the outer myocardial layer without symptoms and signs related to cardiac perforation. We compared the subclinical cardiac perforation rates of the available lead types.ResultsA total of 219, 49, and 3 patients had pacemakers, implantable cardioverter-defibrillators, and cardiac resynchronization therapy, respectively. The total subclinical cardiac perforation rate was 5.6%. Subclinical cardiac perforation by screw-in ventricular leads was significantly more frequent than that caused by tined ventricular leads (13.3% vs 3.3%, respectively, p = 0.002). There were no significant differences in the incidence of cardiac perforation between atrial and ventricular leads, screw-in and tined atrial leads, pacing and defibrillator ventricular leads, nor between magnetic resonance (MR)-conditional and MR-unsafe screw-in ventricular leads. Screw-in ventricular leads were significantly associated with subclinical cardiac perforation [odds ratio, 4.554; 95% confidence interval, 1.587-13.065, p = 0.005]. There was no case subclinical cardiac perforation by septal ventricular leads.ConclusionsSubclinical cardiac perforation by screw-in ventricular leads is not rare. Septal pacing may be helpful in avoiding cardiac perforation.
Project description:BackgroundCardiac events after revascularization are equally attributable to recurrence at site of culprit lesions and development of nonculprit lesions. We evaluated the hypothesis that coronary computed tomography (CT) angiography and coronary artery calcium score (CACS) performed before revascularization predicts cardiac events after treatment.Methods and resultsAmong 2238 consecutive patients without known coronary artery disease who underwent coronary CT angiography and CACS, 359 patients underwent revascularization within 30 days after CT; in 337 of 359 (93.9%) follow-up clinical information was available. In addition to known cardiac risk factors, CT findings were evaluated as predictors of cardiac events after revascularization: CACS and the presence of CT-verified high-risk plaque (CT-HRP). Improvement of predictive accuracy by including CT findings was evaluated from a discrimination (Harrell's C-statistics) standpoint. During the follow-up period (median: 673, interquartile range: 47 to 1529 days), a total of 98 cardiac events occurred. Cox proportional hazard model revealed that age, diabetes, triglyceride, CACS, and nonculprit CT-HRP were significant predictors of overall cardiac events. Although not statistically significant, discriminatory power was greater for the model with CACS (C-stat: 63.2%) and the model with both CACS and CT-HRP (65.8%) compared to the model including neither CACS nor CT-HRP (60.7%).ConclusionsHigh CACS and the presence of nonculprit CT-HRP performed before revascularization are significant predictors of cardiac events after revascularization.
Project description:AimsUnderstanding cardiac function after anthracycline administration is very important from the perspective of preventing the onset of heart failure. Although cardiac magnetic resonance and echocardiography are recognized as the 'gold standard' for detecting cardiotoxicity, they have many shortcomings. We aimed to investigate whether cardiac computed tomography (CCT) could replace these techniques, assessing serial changes in cardiac tissue characteristics as determined by CCT after anthracycline administration.Methods and resultsWe prospectively investigated 15 consecutive breast cancer patients who were scheduled to receive anthracycline therapy. We performed echocardiography and CCT before and 3, 6, and 12 months after anthracycline treatment. The mean cumulative administered anthracycline dose was 269.9 ± 14.6 mg/m2 (doxorubicin-converted dose). Of the 15 enrolled patients who received anthracycline treatment for breast cancer, none met the definition of cardiotoxicity. The CCT-derived extracellular volume fraction tended to continue to increase after anthracycline treatment and had relatively similar dynamics to the left ventricular ejection fraction and global longitudinal strain as determined by echocardiography.ConclusionsOur findings indicated that CCT could provide adequate information about the characteristics of myocardial tissue after anthracycline administration. CCT may improve the understanding of cardiotoxicity by compensating for the weaknesses of echocardiography. This technique could be useful for understanding cardiac tissue characterization as a 'one-stop shop' evaluation, providing new insight into cardiooncology.