Project description:Deserts, such as those found in Saudi Arabia, are one of the most hostile places for plant growth. However, desert plants are able to impact their surrounding microbial community and select beneficial microbes that promote their growth under these extreme conditions. In this study, we examined the soil, rhizosphere and endosphere bacterial communities of four native desert plants Tribulus terrestris, Zygophyllum simplex, Panicum turgidum and Euphorbia granulata from the Southwest (Jizan region), two of which were also found in the Midwest (Al Wahbah area) of Saudi Arabia. While the rhizosphere bacterial community mostly resembled that of the highly different surrounding soils, the endosphere composition was strongly correlated with its host plant phylogeny. In order to assess whether any of the native bacterial endophytes might have a role in plant growth under extreme conditions, we analyzed the properties of 116 cultured bacterial isolates that represent members of the phyla Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes. Our analysis shows that different strains have highly different biochemical properties with respect to nutrient acquisition, hormone production and growth under stress conditions. More importantly, eleven of the isolated strains could confer salinity stress tolerance to the experimental model plant Arabidopsis thaliana suggesting some of these plant-associated bacteria might be useful for improving crop desert agriculture.
Project description:The isolation of soil bacteria from extreme environments represents a major challenge, but also an opportunity to characterize the metabolic potential of soil bacteria that could promote the growth of plants inhabiting these harsh conditions. The aim of this study was to isolate and identify bacteria from two Chilean desert environments and characterize the beneficial traits for plants through a biochemical approach. By means of different culture strategies, we obtained 39 bacterial soil isolates from the Coppermine Peninsula (Antarctica) and 32 from Lejía Lake shore soil (Atacama Desert). The results obtained from the taxonomic classification and phylogenetic analysis based on 16S rDNA sequences indicated that the isolates belonged to four phyla (Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes), and that the most represented genus at both sites was Pseudomonas. Regarding biochemical characterization, all strains displayed in vitro PGP capabilities, but these were in different proportions that grouped them according to their site of origin. This study contributes with microbial isolates from natural extreme environments with biotechnological potentials in improving plant growth under cold stress.
Project description:The Atacama Desert is the oldest and driest desert on Earth, encompassing great temperature variations, high ultraviolet radiation, drought, and high salinity, making it ideal for studying the limits of life and resistance strategies. It is also known for harboring a great biodiversity of adapted life forms. While desertification is increasing as a result of climate change and human activities, it is necessary to optimize soil and water usage, where stress-resistant crops are possible solutions. As many studies have revealed the great impact of the rhizobiome on plant growth efficiency and resistance to abiotic stress, we set up to explore the rhizospheric soils of Suaeda foliosa and Distichlis spicata desert plants. By culturing these soils and using 16S rRNA amplicon sequencing, we address community taxonomy composition dynamics, stability through time, and the ability to promote lettuce plant growth. The rhizospheric soil communities were dominated by the families Pseudomonadaceae, Bacillaceae, and Planococcaceae for S. foliosa and Porphyromonadaceae and Haloferacaceae for D. spicata. Nonetheless, the cultures were completely dominated by the Enterobacteriaceae family (up to 98%). Effectively, lettuce plants supplemented with the cultures showed greater size and biomass accumulation. We identified 12 candidates that could be responsible for these outcomes, of which 5 (Enterococcus, Pseudomonas, Klebsiella, Paenisporosarcina, and Ammoniphilus) were part of the built co-occurrence network. We aim to contribute to the efforts to characterize the microbial communities as key for the plant's survival in extreme environments and as a possible source of consortia with plant growth promotion traits aimed at agricultural applications.IMPORTANCEThe current scenario of climate change and desertification represents a series of incoming challenges for all living organisms. As the human population grows rapidly, so does the rising demand for food and natural resources; thus, it is necessary to make agriculture more efficient by optimizing soil and water usage, thus ensuring future food supplies. Particularly, the Atacama Desert (northern Chile) is considered the most arid place on Earth as a consequence of geological and climatic characteristics, such as the naturally low precipitation patterns and high temperatures, which makes it an ideal place to carry out research that seeks to aid agriculture in future conditions that are predicted to resemble these scenarios. Our main interest lies in utilizing microorganism consortia from plants thriving under extreme conditions, aiming to promote plant growth, improve crops, and render "unsuitable" soils farmable.
Project description:Soil microorganisms mediate several biological processes through the secretion of natural products synthesized in specialized metabolic pathways, yet functional characterization in ecological contexts remains challenging. Using culture-independent metagenomic analyses of microbial DNA derived directly from soil samples, we examined the potential of biosynthetic gene clusters (BGCs) from six bacterial communities distributed along an altitudinal gradient of the Andes Mountains in the Atacama Desert. We mined 38 metagenome-assembled genomes (MAGs) and identified 168 BGCs. Results indicated that most predicted BGCs were classified as non-ribosomal-peptides (NRP), post-translational modified peptides (RiPP), and terpenes, which were mainly identified in genomes of species from Acidobacteriota and Proteobacteria phyla. Based on BGC composition according to types of core biosynthetic genes, six clusters of MAGs were observed, three of them with predominance for a single phylum, of which two also showed specificity to a single sampling site. Comparative analyses of accessory genes in BGCs showed associations between membrane transporters and other protein domains involved in specialized metabolism with classes of biosynthetic cores, such as resistance-nodulation-cell division (RND) multidrug efflux pumps with RiPPs and the iron-dependent transporter TonB with terpenes. Our findings increase knowledge regarding the biosynthetic potential of uncultured bacteria inhabiting pristine locations from one of the oldest and driest nonpolar deserts on Earth.IMPORTANCEMuch of what we know about specialized metabolites in the Atacama Desert, including Andean ecosystems, comes from isolated microorganisms intended for drug development and natural product discovery. To complement research on the metabolic potential of microbes in extreme environments, comparative analyses on functional annotations of biosynthetic gene clusters (BGCs) from uncultivated bacterial genomes were carried out. Results indicated that in general, BGCs encode for structurally unique metabolites and that metagenome-assembled genomes did not show an obvious relationship between the composition of their core biosynthetic potential and taxonomy or geographic distribution. Nevertheless, some members of Acidobacteriota showed a phylogenetic relationship with specific metabolic traits and a few members of Proteobacteria and Desulfobacterota exhibited niche adaptations. Our results emphasize that studying specialized metabolism in environmental samples may significantly contribute to the elucidation of structures, activities, and ecological roles of microbial molecules.
Project description:The Atacama Desert has been pointed out as one of the places on earth where the highest surface irradiance may occur. This area is characterized by its high altitude, prevalent cloudless conditions and relatively low columns of ozone and water vapor. Aimed at the characterization of the solar spectrum in the Atacama Desert, we carried out in February-March 2015 ground-based measurements of the spectral irradiance (from the ultraviolet to the near infrared) at seven locations that ranged from the city of Antofagasta (on the southern pacific coastline) to the Chajnantor Plateau (5,100 m altitude). Our spectral measurements allowed us to retrieve the total ozone column, the precipitable water, and the aerosol properties at each location. We found that changes in these parameters, as well as the shorter optical path length at high-altitude locations, lead to significant increases in the surface irradiance with the altitude. Our measurements show that, in the range 0-5100 m altitude, surface irradiance increases with the altitude by about 27% in the infrared range, 6% in the visible range, and 20% in the ultraviolet range. Spectral measurements carried out at the Izaña Observatory (Tenerife, Spain), in Hannover (Germany) and in Santiago (Chile), were used for further comparisons.
Project description:Arsenic (As), a semimetal toxic for humans, is commonly associated with serious health problems. The most common form of massive and chronic exposure to As is through consumption of contaminated drinking water. This study aimed to isolate an As resistant bacterial strain to characterize its ability to oxidize As (III) when immobilized in an activated carbon batch bioreactor and to evaluate its potential to be used in biological treatments to remediate As contaminated waters. The diversity of bacterial communities from sediments of the As-rich Camarones River, Atacama Desert, Chile, was evaluated by Illumina sequencing. Dominant taxonomic groups (>1%) isolated were affiliated with Proteobacteria and Firmicutes. A high As-resistant bacterium was selected (Pseudomonas migulae VC-19 strain) and the presence of aio gene in it was investigated. Arsenite detoxification activity by this bacterial strain was determined by HPLC/HG/AAS. Particularly when immobilized on activated carbon, P. migulae VC-19 showed high rates of As(III) conversion (100% oxidized after 36 h of incubation). To the best of our knowledge, this is the first report of a P. migulae arsenite oxidizing strain that is promising for biotechnological application in the treatment of arsenic contaminated waters.
Project description:Future climate change has the potential to alter the distribution and prevalence of plant pathogens, which may have significant implications for both agricultural crops and natural plant communities. However, there are few long-term datasets against which modelled predictions of pathogen responses to climate change can be tested. Here, we use 18S metabarcoding of 28 rodent middens (solidified deposits of rodent coprolites and nesting material) from the Central Atacama, spanning the last ca. 49 ka, to provide the first long-term late Quaternary record of change in plant pathogen communities in response to changing climate. Plant pathogen richness was significantly greater in middens deposited during the Central Andean Pluvial Event (CAPE); a period of increased precipitation between 17.5-8.5 ka. Moreover, the occurrence frequency of Pucciniaceae (rust fungi) was significantly greater during the CAPE, and the highest relative abundances for five additional potentially pathogenic taxa also occurred during this period. The results demonstrate the promising potential for ancient DNA analysis of late Quaternary samples to reveal insights into how plant pathogens responded to past climatic and environmental change, which could help predict how pathogens may responded to future change.