Project description:Antibiotics that inhibit multiple bacterial targets offer a promising therapeutic strategy against resistance evolution, but developing such antibiotics is challenging. Here we demonstrate that a rational design of balanced multitargeting antibiotics is feasible by using a medicinal chemistry workflow. The resultant lead compounds, ULD1 and ULD2, belonging to a novel chemical class, almost equipotently inhibit bacterial DNA gyrase and topoisomerase IV complexes and interact with multiple evolutionary conserved amino acids in the ATP-binding pockets of their target proteins. ULD1 and ULD2 are excellently potent against a broad range of gram-positive bacteria. Notably, the efficacy of these compounds was tested against a broad panel of multidrug-resistant Staphylococcus aureus clinical strains. Antibiotics with clinical relevance against staphylococcal infections fail to inhibit a significant fraction of these isolates, whereas both ULD1 and ULD2 inhibit all of them (minimum inhibitory concentration [MIC] ≤1 μg/mL). Resistance mutations against these compounds are rare, have limited impact on compound susceptibility, and substantially reduce bacterial growth. Based on their efficacy and lack of toxicity demonstrated in murine infection models, these compounds could translate into new therapies against multidrug-resistant bacterial infections.
Project description:ObjectiveGremlin 1 (GREM1) is a secreted BMP2/4 inhibitor which regulates commitment and differentiation of human adipose precursor cells and prevents the browning effect of BMP4. GREM1 is an insulin antagonist and serum levels are high in type 2 diabetes (T2D). We here examined in vivo effects of AAV8 (Adeno-Associated Viral vectors of serotype eight) GREM 1 targeting the liver in mature mice to increase its systemic secretion and also, in a separate study, injected recombinant GREM 1 intraperitoneally. The objective was to characterize systemic effects of GREM 1 on insulin sensitivity, glucose tolerance, body weight, adipose cell browning and other local tissue effects.MethodsAdult mice were injected with AAV8 vectors expressing GREM1 in the liver or receiving regular intra-peritoneal injections of recombinant GREM1 protein. The mice were fed with a low fat or high fat diet (HFD) and followed over time.ResultsLiver-targeted AAV8-GREM1 did not alter body weight, whole-body glucose and insulin tolerance, or adipose tissue gene expression. Although GREM1 protein accumulated in liver cells, GREM1 serum levels were not increased suggesting that it may not have been normally processed for secretion. Hepatic lipid accumulation, inflammation and fibrosis were also not changed. Repeated intraperitoneal rec-GREM1 injections for 5 weeks were also without effects on body weight and insulin sensitivity. UCP1 was slightly but significantly reduced in both white and brown adipose tissue but this was not of sufficient magnitude to alter body weight. We validated that recombinant GREM1 inhibited BMP4-induced pSMAD1/5/9 in murine cells in vitro, but saw no direct inhibitory effect on insulin signalling and pAkt (ser 473 and thr 308) activation.ConclusionGREM1 accumulates intracellularly when overexpressed in the liver cells of mature mice and is apparently not normally processed/secreted. However, also repeated intraperitoneal injections were without effects on body weight and insulin sensitivity and adipose tissue UCP1 levels were only marginally reduced. These results suggest that mature mice do not readily respond to GREMLIN 1 but treatment of murine cells with GREMLIN 1 protein in vitro validated its inhibitory effect on BMP4 signalling while insulin signalling was not altered.
Project description:Lumican, a small leucine rich proteoglycan (SLRP), is a component of extracellular matrix which also functions as a matrikine regulating multiple cell activities. In the cornea, lumican maintains corneal transparency by regulating collagen fibrillogenesis, promoting corneal epithelial wound healing, regulating gene expression and maintaining corneal homeostasis. We have recently shown that a peptide designed from the 13 C-terminal amino acids of lumican (LumC13) binds to ALK5/TGFBR1 (type1 receptor of TGFβ) to promote wound healing. Herein we evaluate the mechanism by which this synthetic C-terminal amphiphilic peptide (LumC13), binds to ALK5. These studies clearly reveal that LumC13-ALK5 form a stable complex. In order to determine the minimal amino acids required for the formation of a stable lumican/ALK5 complex derivatives of LumC13 were designed and their binding to ALK5 investigated in silico. These LumC13 derivatives were tested both in vitro and in vivo to evaluate their ability to promote corneal epithelial cell migration and corneal wound healing, respectively. These validations add to the therapeutic value of LumC13 (Lumikine) and aid its clinical relevance of promoting the healing of corneal epithelium debridement. Moreover, our data validates the efficacy of our computational approach to design active peptides based on interactions of receptor and chemokine/ligand.
Project description:Recent clinical successes have intensified interest in using adeno-associated virus (AAV) vectors for therapeutic gene delivery. The liver is a key clinical target, given its critical physiological functions and involvement in a wide range of genetic diseases. Here, we report the bioengineering of a set of next-generation AAV vectors, named AAV-SYDs (where "SYD" stands for Sydney, Australia), with increased human hepato-tropism in a liver xenograft mouse model repopulated with primary human hepatocytes. We followed a two-step process that staggered directed evolution and domain-swapping approaches. Using DNA-family shuffling, we first mapped key AAV capsid regions responsible for efficient human hepatocyte transduction in vivo. Focusing on these regions, we next applied domain-swapping strategies to identify and study key capsid residues that enhance primary human hepatocyte uptake and transgene expression. Our findings underscore the potential of AAV-SYDs as liver gene therapy vectors and provide insights into the mechanism responsible for their enhanced transduction profile.
Project description:Breeding yeast strains for industrial alcoholic fermentation requires laborious screening due to the lack of in vivo modification strategies. Here we show that quiescence-specific cell wall thickening via synthesis of a major component, 1,3-β-glucan, critically antagonizes cellular fermentation ability by sequestering the available cytoplasmic carbon sources. This study provides insights into glycolytic control and reports an effective and reliable rational fermentation design.
Project description:In a previously published study, the authors devised a molecular topology QSAR (quantitative structure-activity relationship) approach to detect novel fungicides acting as inhibitors of chitin deacetylase (CDA). Several of the chosen compounds exhibited noteworthy activity. Due to the close relationship between chitin-related proteins present in fungi and other chitin-containing plant-parasitic species, the authors decided to test these molecules against nematodes, based on their negative impact on agriculture. From an overall of 20 fungal CDA inhibitors, six showed to be active against Caenorhabditis elegans. These experimental results made it possible to develop two new molecular topology-based QSAR algorithms for the rational design of potential nematicides with CDA inhibitor activity for crop protection. Linear discriminant analysis was employed to create the two algorithms, one for identifying the chemo-mathematical pattern of commercial nematicides and the other for identifying nematicides with activity on CDA. After creating and validating the QSAR models, the authors screened several natural and synthetic compound databases, searching for alternatives to current nematicides. Finally one compound, the N2-(dimethylsulfamoyl)-N-{2-[(2-methyl-2-propanyl)sulfanyl]ethyl}-N2-phenylglycinamide or nematode chitin deacetylase inhibitor, was selected as the best candidate and was further investigated both in silico, through molecular docking and molecular dynamic simulations, and in vitro, through specific experimental assays. The molecule shows favorable binding behavior on the catalytic pocket of C. elegans CDA and the experimental assays confirm potential nematicide activity.
Project description:Microtubules are highly dynamic polymers of α,β-tubulin dimers which play an essential role in numerous cellular processes such as cell proliferation and intracellular transport, making them an attractive target for cancer and neurodegeneration research. To date, a large number of known tubulin binders were derived from natural products, while only one was developed by rational structure-based drug design. Several of these tubulin binders show promising in vitro profiles while presenting unacceptable off-target effects when tested in patients. Therefore, there is a continuing demand for the discovery of safer and more efficient tubulin-targeting agents. Since tubulin structural data is readily available, the employment of computer-aided design techniques can be a key element to focus on the relevant chemical space and guide the design process. Due to the high diversity and quantity of structural data available, we compiled here a guide to the accessible tubulin-ligand structures. Furthermore, we review different ligand and structure-based methods recently used for the successful selection and design of new tubulin-targeting agents.
Project description:The advances in subunit vaccines development have intensified the search for potent adjuvants, particularly adjuvants inducing cell-mediated immune responses. Identification of the C-type lectin Mincle as one of the receptors underlying the remarkable immunogenicity of the mycobacterial cell wall, via recognition of trehalose-6,6'-dimycolate (TDM), has opened avenues for the rational design of such molecules. Using a combination of chemical synthesis, biological evaluation, molecular dynamics simulations, and protein mutagenesis, we gained insight into the molecular bases of glycolipid recognition by Mincle. Unexpectedly, the fine structure of the fatty acids was found to play a key role in the binding of a glycolipid to the carbohydrate recognition domain of the lectin. Glucose and mannose esterified at O-6 by a synthetic α-ramified 32-carbon fatty acid showed agonist activity similar to that of TDM, despite their much simpler structure. Moreover, they were seen to stimulate proinflammatory cytokine production in primary human and murine cells in a Mincle-dependent fashion. Finally, they were found to induce strong Th1 and Th17 immune responses in vivo in immunization experiments in mice and conferred protection in a murine model of Mycobacterium tuberculosis infection. Here we describe the rational development of new molecules with powerful adjuvant properties.
Project description:Parvoviruses are a diverse family of small, non-enveloped DNA viruses that infect a wide variety of species, tissues and cell types. For over half a century, their intriguing biology and pathophysiology has fueled intensive research aimed at dissecting the underlying viral and cellular mechanisms. Concurrently, their broad host specificity (tropism) has motivated efforts to develop parvoviruses as gene delivery vectors for human cancer or gene therapy applications. While the sum of preclinical and clinical data consistently demonstrates the great potential of these vectors, these findings also illustrate the importance of enhancing and restricting in vivo transgene expression in desired cell types. To this end, major progress has been made especially with vectors based on Adeno-associated virus (AAV), whose capsid is highly amenable to bioengineering, repurposing and expansion of its natural tropism. Here, we provide an overview of the state-of-the-art approaches to create new AAV variants with higher specificity and efficiency of gene transfer in on-target cells. We first review traditional and novel directed evolution approaches, including high-throughput screening of AAV capsid libraries. Next, we discuss programmable receptor-mediated targeting with a focus on two recent technologies that utilize high-affinity binders. Finally, we highlight one of the latest stratagems for rational AAV vector characterization and optimization, namely, machine learning, which promises to facilitate and accelerate the identification of next-generation, safe and precise gene delivery vehicles.
Project description:Analysis of whole mouse muscle and inguinal lymph node gene expression signature induced after 24h by in-vivo intramuscularly administration of R848, SMIP-7.7, SMIP-7.8 and 4%DMSO controls. Analysis of whole mouse muscle and inguinal lymph node gene expression signature induced after 6h by in-vivo intramuscularly administration of R848 and SMIP-7.2 in 1% DMSO, and SMIP-7.10 and SMIP-7.10+alum in Buffer.