Project description:BackgroundExtrapolation of survival data is a key task in health technology assessments (HTAs), which may be improved by incorporating general population mortality data via relative survival models. Dynamic survival models are a promising method for extrapolation that may be expanded to dynamic relative survival models (DRSMs), a novel development presented here. There are currently neither examples of dynamic models in HTA nor comparisons of DRSMs with other relative survival models when used for survival extrapolation.MethodsAn existing appraisal, for which there had been disagreement over the approach to survival extrapolation, was chosen and the health economic model recreated. The sensitivity of estimates of cost-effectiveness to different model choices (standard survival models, DSMs, and DRSMs) and specifications was examined. The appraisal informed a simulation study to evaluate DRSMs with relative survival models based on both standard and spline-based (flexible) models.ResultsDynamic models provided insight into the behavior of the trend in the hazard function and how it may vary during the extrapolated phase. DRSMs led to extrapolations with improved plausibility for which model choice may be based on clinical input. In the simulation study, the flexible and dynamic relative survival models performed similarly and provided highly variable extrapolations.LimitationsFurther experience with these models is required to identify settings when they are most useful, and they provide sufficiently accurate extrapolations.ConclusionsDynamic models provide a flexible and attractive method for extrapolating survival data and facilitate the use of clinical input for model choice. Flexible and dynamic relative survival models make few structural assumptions and can improve extrapolation plausibility, but further research is required into methods for reducing the variability in extrapolations.
Project description:The uptake of technologies such as airborne laser scanning (ALS) and more recently digital aerial photogrammetry (DAP) enable the characterization of 3-dimensional (3D) forest structure. These forest structural attributes are widely applied in the development of modern enhanced forest inventories. As an alternative to extensive ALS or DAP based forest inventories, regional forest attribute maps can be built from relationships between ALS or DAP and wall-to-wall satellite data products. To date, a number of different approaches exist, with varying code implementations using different programming environments and tailored to specific needs. With the motivation for open, simple and modern software, we present FOSTER (Forest Structure Extrapolation in R), a versatile and computationally efficient framework for modeling and imputation of 3D forest attributes. FOSTER derives spectral trends in remote sensing time series, implements a structurally guided sampling approach to sample these often spatially auto correlated datasets, to then allow a modelling approach (currently k-NN imputation) to extrapolate these 3D forest structure measures. The k-NN imputation approach that FOSTER implements has a number of benefits over conventional regression based approaches including lower bias and reduced over fitting. This paper provides an overview of the general framework followed by a demonstration of the performance and outputs of FOSTER. Two ALS-derived variables, the 95th percentile of first returns height (elev_p95) and canopy cover above mean height (cover), were imputed over a research forest in British Columbia, Canada with relative RMSE of 18.5% and 11.4% and relative bias of -0.6% and 1.4% respectively. The processing sequence developed within FOSTER represents an innovative and versatile framework that should be useful to researchers and managers alike looking to make forest management decisions over entire forest estates.
Project description:Simultaneously achieving high optical transparency and excellent charge mobility in semiconducting polymers has presented a challenge for the application of these materials in future "flexible" and "transparent" electronics (FTEs). Here, by blending only a small amount (∼15 wt %) of a diketopyrrolopyrrole-based semiconducting polymer (DPP2T) into an inert polystyrene (PS) matrix, we introduce a polymer blend system that demonstrates both high field-effect transistor (FET) mobility and excellent optical transparency that approaches 100%. We discover that in a PS matrix, DPP2T forms a web-like, continuously connected nanonetwork that spreads throughout the thin film and provides highly efficient 2D charge pathways through extended intrachain conjugation. The remarkable physical properties achieved using our approach enable us to develop prototype high-performance FTE devices, including colorless all-polymer FET arrays and fully transparent FET-integrated polymer light-emitting diodes.
Project description:We investigated the electrical, optical and mechanical properties of silver (Ag) nanowire (NW) embedded into a silk fibroin (SF) substrate to create high performance, flexible, transparent, biocompatible, and biodegradable heaters for use in wearable electronics. The Ag NW-embedded SF showed a low sheet resistance of 15 Ω sq-1, high optical transmittance of 85.1%, and a small inner/outer critical bending radius of 1 mm. In addition, the Ag NW-embedded SF showed a constant resistance change during repeated bending, folding, and rolling because the connectivity of the Ag NW embedded into the SF substrate was well maintained. Furthermore, the biocompatible and biodegradable Ag NW-embedded SF substrate served as a flexible interconnector for wearable electronics. The high performance of the transparent and flexible heater demonstrated that an Ag NW-embedded SF-based heater can act as a biocompatible and biodegradable substrate for wearable heaters for the human body.
Project description:BackgroundIn health technology assessment, restricted mean survival time and life expectancy are commonly evaluated. Parametric models are typically used for extrapolation. Spline models using a relative survival framework have been shown to estimate life expectancy of cancer patients more reliably; however, more research is needed to assess spline models using an all-cause survival framework and standard parametric models using a relative survival framework.AimTo assess survival extrapolation using standard parametric models and spline models within relative survival and all-cause survival frameworks.MethodsFrom the Swedish Cancer Registry, we identified patients diagnosed with 5 types of cancer (colon, breast, melanoma, prostate, and chronic myeloid leukemia) between 1981 and 1990 with follow-up until 2020. Patients were categorized into 15 cancer cohorts by cancer and age group (18-59, 60-69, and 70-99 y). We right-censored the follow-up at 2, 3, 5, and 10 y and fitted the parametric models within an all-cause and a relative survival framework to extrapolate to 10 y and lifetime in comparison with the observed Kaplan-Meier survival estimates. All cohorts were modeled with 6 standard parametric models (exponential, Weibull, Gompertz, log-logistic, log-normal, and generalized gamma) and 3 spline models (on hazard, odds, and normal scales).ResultsFor predicting 10-y survival, spline models generally performed better than standard parametric models. However, using an all-cause or a relative survival framework did not show any distinct difference. For lifetime survival, extrapolating from a relative survival framework agreed better with the observed survival, particularly using spline models.ConclusionsFor extrapolation to 10 y, we recommend spline models. For extrapolation to lifetime, we suggest extrapolating in a relative survival framework, especially using spline models.HighlightsFor survival extrapolation to 10 y, spline models generally performed better than standard parametric models did. However, using an all-cause or a relative survival framework showed no distinct difference under the same parametric model.Survival extrapolation to lifetime within a relative survival framework agreed well with the observed data, especially using spline models.Extrapolating parametric models within an all-cause survival framework may overestimate survival proportions at lifetime; models for the relative survival approach may underestimate instead.
Project description:The transmittance, conductivity, and flexibility are the crucial properties for the development of next-generation flexible electrodes. Achieving a good trade-off between transmittance and conductivity of flexible electrodes has been a challenge because the two properties are inversely proportional. Herein, we reveal a good trade-off between transmittance and conductivity of gold nanomesh (AuNM) can be achieved through appropriately increasing the AuNM thickness no more than 40 nm, the mean free path of electrons in Au metal. The further flexibility investigation indicates that the AuNM electrodes with mesh structure show higher tolerance than the Au bulk film, and the AuNM electrodes with smaller inter-aperture wire width can accommodate more tensile strains than a counterpart with bigger inter-aperture wire width. The simulated results based on finite element analysis (FEA) show good agreement with experimental results, which indicates the fabrication method of versatile nanosphere lithography (NSL) is reliable. These results established a promising approach toward next-generation large-scale flexible transparent AuNM electrodes for flexible electronics.
Project description:In the race to find novel transparent conductors for next-generation optoelectronic devices, graphene is supposed to be one of the leading candidates, as it has the potential to satisfy all future requirements. However, the use of graphene as a truly transparent conductor remains a great challenge because its lowest sheet resistance demonstrated so far exceeds that of the commercially available indium tin oxide. The possible cause of low conductivity lies in its intrinsic growth process, which requires further exploration. In this work, I have approached this problem by controlling graphene nucleation during the chemical vapor deposition process as well as by adopting three distinct procedures, including bis(trifluoromethanesulfonyl)amide doping, post annealing, and flattening of graphene films. Additionally, van der Waals stacked graphene layers have been prepared to reduce the sheet resistance effectively. I have demonstrated an efficient and flexible transparent conductor with the extremely low sheet resistance of 40 Ω sq-1, high transparency (T r ∼90%), and high mechanical flexibility, making it suitable for electrode materials in future optoelectronic devices.
Project description:Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target--a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10(-3)/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells.
Project description:Human-computer interfaces, smart glasses, touch screens, and some electronic skins require highly transparent and flexible pressure-sensing elements. Flexible pressure sensors often apply a microstructured or porous active material to improve their sensitivity and response speed. However, the microstructures or small pores will result in high haze and low transparency of the device, and thus it is challenging to balance the sensitivity and transparency simultaneously in flexible pressure sensors or electronic skins. Here, for a capacitive-type sensor that consists of a porous polyvinylidene fluoride (PVDF) film sandwiched between two transparent electrodes, the challenge is addressed by filling the pores with ionic liquid that has the same refractive index with PVDF, and the transmittance of the film dramatically boosts from 0 to 94.8% in the visible range. Apart from optical matching, the ionic liquid also significantly improves the signal intensity as well as the sensitivity due to the formation of an electric double layer at the dielectric-electrode interfaces, and improves the toughness and stretchability of the active material benefiting from a plasticization effect. Such transparent and flexible sensors will be useful in smart windows, invisible bands, and so forth.
Project description:Herein, we report a flexible high-conductivity transparent electrode (denoted as S-PH1000), based on conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and itsapplication to flexible semi-transparentsupercapacitors. A high conductivity of 2673 S/cm was achieved for the S-PH1000 electrode on flexible plastic substrates via a H2SO4 treatment with an optimized concentration of 80 wt.%. This is among the top electrical conductivities of PEDOT:PSS films processed on flexible substrates. As for the electrochemical properties,a high specific capacitance of 161F/g was obtained from the S-PH1000 electrode at a current density of 1 A/g. Excitingly, a specific capacitance of 121 F/g was retained even when the current density increased to 100 A/g, which demonstrates the high-rate property of this electrode. Flexible semi-transparent supercapacitors based on these electrodes demonstrate high transparency, over 60%, at 550 nm. A high power density value, over 19,200 W/kg,and energy density, over 3.40 Wh/kg, was achieved. The semi-transparent flexible supercapacitor was successfully applied topower a light-emitting diode.