Project description:Rising ocean temperatures are increasing the rate and intensity of coral mass bleaching events, leading to the collapse of coral reef ecosystems. To better understand the dynamics of coral-algae symbioses, it is critical to decipher the role each partner plays in the holobiont's thermotolerance. Here, we investigated the role of the symbiont by comparing transcriptional heat stress responses of anemones from two thermally distinct locations, Florida (CC7) and Hawaii (H2) as well as a heterologous host-symbiont combination composed of CC7 host anemones inoculated with the symbiont Breviolum minutum (SSB01) from H2 anemones (CC7-B01). We find that oxidative stress and apoptosis responses are strongly influenced by symbiont type, as further confirmed by caspase-3 activation assays, but that the overall response to heat stress is dictated by the compatibility of both partners. Expression of genes essential to symbiosis revealed a shift from a nitrogen- to a carbon-limited state only in the heterologous combination CC7-B01, suggesting a bioenergetic disruption of symbiosis during stress. Our results indicate that symbiosis is highly fine-tuned towards particular partner combinations and that heterologous host-symbiont combinations are metabolically less compatible under stress. These results are essential for future strategies aiming at increasing coral resilience using heterologous thermotolerant symbionts.
Project description:The success of any symbiosis under stress conditions is dependent upon the responses of both partners to that stress. The coral symbiosis is particularly susceptible to small increases of temperature above the long term summer maxima, which leads to the phenomenon known as coral bleaching, where the intracellular dinoflagellate symbionts are expelled. Here we for the first time used quantitative PCR to simultaneously examine the gene expression response of orthologs of the coral Acropora aspera and their dinoflagellate symbiont Symbiodinium. During an experimental bleaching event significant up-regulation of genes involved in stress response (HSP90 and HSP70) and carbon metabolism (glyceraldehyde-3-phosphate dehydrogenase, α-ketoglutarate dehydrogenase, glycogen synthase and glycogen phosphorylase) from the coral host were observed. In contrast in the symbiont, HSP90 expression decreased, while HSP70 levels were increased on only one day, and only the α-ketoglutarate dehydrogenase expression levels were found to increase. In addition the changes seen in expression patterns of the coral host were much larger, up to 10.5 fold, compared to the symbiont response, which in all cases was less than 2-fold. This targeted study of the expression of key metabolic and stress genes demonstrates that the response of the coral and their symbiont vary significantly, also a response in the host transcriptome was observed prior to what has previously been thought to be the temperatures at which thermal stress events occur.
Project description:We examined the effects of symbiont identity and heat stress on the host metabolome and proteome in the cnidarian-dinoflagellate symbiosis. Exaiptasia diaphana ('Aiptasia') was inoculated with its homologous (i.e., native) symbiont Breviolum minutum or a heterologous (i.e., non-native) symbiont (Symbiodinium microadriaticum; Durusdinium trenchii) and thermally stressed. Integrated metabolome and proteome analyses characterised host thermal responses between symbioses, with clear evidence of enhanced nutritional deprivation and cellular stress in hosts harbouring heterologous symbionts following temperature stress. Host metabolomes were partially distinct at the control temperature; however, thermal stress caused metabolomes of anemones containing the two heterologous symbionts to become more alike and more distinct from those containing B. minutum. While these patterns could be partly explained by innate symbiont-specific differences, they may also reflect differences in symbiont density, as under control conditions D. trenchii attained 60% and S. microadriaticum 15% of the density attained by B. minutum, and at elevated temperature only D. trenchii-colonised anemones bleached (60% loss). Our findings add to a growing literature that highlights the physiological limits of partner switching as a means of adaptation to global warming. However, we also provide tentative evidence for improved metabolic functioning with a heterologous symbiont (D. trenchii) after sustained symbiosis.
Project description:Pale anemones (Aiptasia pallida) coexist with dinoflagellates (primarily Symbiodinium minutum) in a mutualistic relationship. The purpose of this study was to investigate the role of these symbionts in gonad development of anemone hosts. Symbiotic and aposymbiotic anemones were subjected to light cycles that induced gametogenesis. These anemones were then sampled weekly for nine weeks, and gonad development was analyzed histologically. Anemone size was measured as mean body column diameter, and oocytes or sperm follicles were counted for each anemone. Generalized linear models were used to evaluate the influence of body size and symbiotic status on whether gonads were present and on the number of oocytes or sperm follicles produced. Body size predicted whether gonads were present, with larger anemones being more likely than smaller anemones to develop gonads. Both body size and symbiotic status predicted gonad size, such that larger and symbiotic anemones produced more oocytes and sperm follicles than smaller and aposymbiotic anemones. Overall, only 22 % of aposymbiotic females produced oocytes, whereas 63 % of symbiotic females produced oocytes. Similarly, 6 % of aposymbiotic males produced sperm follicles, whereas 60 % of symbiotic males produced sperm follicles. Thus, while gonads were present in 62 % of symbiotic anemones, they were present in only 11 % of aposymbiotic anemones. These results indicate that dinoflagellate symbionts influence gonad development and thus sexual maturation in both female and male Aiptasia pallida anemones. This finding substantiates and expands our current understanding of the importance of symbionts in the development and physiology of cnidarian hosts.
Project description:Raw metabolomic Mass spectrometry data from thermal stress experiment on 3 corals from the Great Barrier Reef, Acropora hyacinthus , Porites lobata and Stylophora pistillata.
Project description:Corals and other cnidarians house photosynthetic dinoflagellate symbionts within membrane-bound compartments inside gastrodermal cells. Nutritional interchanges between the partners produce carbohydrates and lipids for metabolism, growth, energy stores, and cellular structures. Although lipids play a central role in the both the energetics and the structural/morphological features of the symbiosis, previous research has primarily focused on the fatty acid and neutral lipid composition of the host and symbiont. In this study we conducted a mass spectrometry-based survey of the lipidomic changes associated with symbiosis in the sea anemone Aiptasia pallida, an important model system for coral symbiosis. Lipid extracts from A. pallida in and out of symbiosis with its symbiont Symbiodinium were prepared and analyzed using negative-ion electrospray ionization quadrupole time-of-flight mass spectrometry. Through this analysis we have identified, by exact mass and collision-induced dissociation mass spectrometry (MS/MS), several classes of glycerophospholipids in A. pallida. Several molecular species of di-acyl phosphatidylinositol and phosphatidylserine as well as 1-alkyl, 2-acyl phosphatidylethanolamine (PE) and phosphatidycholine were identified. The 1-alkyl, 2-acyl PEs are acid sensitive suggestive that they are plasmalogen PEs possessing a double bond at the 1-position of the alkyl linked chain. In addition, we identified several molecular species of phosphonosphingolipids called ceramide aminoethylphosphonates in anemone lipid extracts by the release of a characteristic negative product ion at m/z 124.014 during MS/MS analysis. Sulfoquinovosyldiacylglycerol (SQDG), an anionic lipid often found in photosynthetic organisms, was identified as a prominent component of Symbiodinium lipid extracts. A comparison of anemone lipid profiles revealed a subset of lipids that show dramatic differences in abundance when anemones are in the symbiotic state as compared to the non-symbiotic state. The data generated in this analysis will serve as a resource to further investigate the role of lipids in symbiosis between Symbiodinium and A. pallida.
Project description:The metabolic symbiosis with photosynthetic algae allows corals to thrive in the oligotrophic environments of tropical seas. Different aspects of this relationship have been investigated using the emerging model organism Aiptasia. However, many fundamental questions, such as the nature of the symbiotic relationship and the interactions of nutrients between the partners remain highly debated. Using a meta-analysis approach, we identified a core set of 731 high-confidence symbiosis-associated genes that revealed host-dependent recycling of waste ammonium and amino acid synthesis as central processes in this relationship. Subsequent validation via metabolomic analyses confirmed that symbiont-derived carbon enables host recycling of ammonium into nonessential amino acids. We propose that this provides a regulatory mechanism to control symbiont growth through a carbon-dependent negative feedback of nitrogen availability to the symbiont. The dependence of this mechanism on symbiont-derived carbon highlights the susceptibility of this symbiosis to changes in carbon translocation, as imposed by environmental stress.
Project description:We examined the effect of symbiont identity and heat stress on host metabolome and proteome in the cnidarian-dinoflagellate symbiosis. Exaiptasia diaphana (‘Aiptasia’) was inoculated with its native symbiont (Breviolum minutum) or a non-native symbiont (Symbiodinium microadriaticum; Durusdinium trenchii) and subjected to thermal stress. Host metabolomes were partially distinct at control temperature, however thermal stress caused profiles of anemones containing the two non-native symbionts to become more similar to each other and more distinct from those containing B. minutum. This may reflect symbiont densities; under control conditions, D. trenchii attained 60% and S. microadriaticum 15% of the density attained by B. minutum. At elevated temperature, only D. trenchii-colonised anemones experienced bleaching (60% loss). Combined metabolome and proteome analyses revealed the compounds that make up the thermal response of each symbiosis, either reflecting innate symbiont-specific differences or host-symbiont interactions. We show clear evidence of enhanced nutritional deprivation and cellular stress in hosts harbouring a novel symbiont following temperature stress, independent of the symbiont’s putative thermal resilience. Our findings highlight the physiological limits of partner switching as a means of adaptation to increased temperatures. However, we also offer preliminary evidence suggesting that metabolic functioning of the D. trenchii-Aiptasia association improves over the long-term.
Project description:The symbiotic relationship between cnidarians and dinoflagellates is the cornerstone of coral reef ecosystems. Although research has focused on the molecular mechanisms underlying this symbiosis, the role of epigenetic mechanisms, that is, the study of heritable changes that do not involve changes in the DNA sequence, is unknown. To assess the role of DNA methylation in the cnidarian-dinoflagellate symbiosis, we analyzed genome-wide CpG methylation, histone associations, and transcriptomic states of symbiotic and aposymbiotic anemones in the model system Aiptasia. We found that methylated genes are marked by histone 3 lysine 36 trimethylation (H3K36me3) and show significant reduction of spurious transcription and transcriptional noise, revealing a role of DNA methylation in the maintenance of transcriptional homeostasis. Changes in DNA methylation and expression show enrichment for symbiosis-related processes, such as immunity, apoptosis, phagocytosis recognition, and phagosome formation, and reveal intricate interactions between the underlying pathways. Our results demonstrate that DNA methylation provides an epigenetic mechanism of transcriptional homeostasis that responds to symbiosis.
Project description:Discovering how corals can adjust their thermal sensitivity in the context of global climate change is important in understanding the long-term persistence of coral reefs. In this study, we showed that short-term preconditioning to higher temperatures, 3°C below the experimentally determined bleaching threshold, for a period of 10 days provides thermal tolerance for the symbiosis stability between the scleractinian coral, Acropora millepora and Symbiodinium. Based on genotypic analysis, our results indicate that the acclimatization of this coral species to thermal stress does not come down to simple changes in Symbiodinium and/or the bacterial communities that associate with reef-building corals. This suggests that the physiological plasticity of the host and/or symbiotic components appears to play an important role in responding to ocean warming. The further study of host and symbiont physiology, both of Symbiodinium and prokaryotes, is of paramount importance in the context of global climate change, as mechanisms for rapid holobiont acclimatization will become increasingly important to the long-standing persistence of coral reefs.