Project description:ObjectiveThere is conflicting published research about the clinical effectiveness of repetitive transcranial magnetic stimulation (rTMS) for the treatment of post-stroke depression (PSD). In order to provide trustworthy information for upcoming therapeutic treatments, this review attempts to compile and assess the data from pertinent systematic reviews and meta-analyses.MethodsThe systematic evaluation of repetitive transcranial magnetic stimulation for post-stroke depression was collected by searching CNKI, VIP, Wanfang Database, CBM, PubMed, EMBASE, Web of Science, and Cochrane Library. The retrieval time is from database construction to September 2022. After selection, the included literature was evaluated for methodological quality, reporting quality, and evidence quality using AMSTAR2, PRISMA statements, and the GRADE system.ResultsThere were a total of 13 studies included, with three having generally comprehensive reporting according to the PRISMA statement, eight having some reporting issues, two having pretty substantial information issues, and 13 having extremely poor methodological quality according to the AMSTAR2. The GRADE was used to grade the quality of the evidence, and the included literature had 0 high-level evidence, eight medium-level evidence, 12 low-level evidence, and 22 very low-level evidence.LimitationsThe results of this study are from researchers' subjective evaluation and only qualitative analysis, not quantitative evaluation. Although repeated cross-evaluation of researchers is carried out, the results will be personal. The interventions included in the study were complex, and it was impossible to analyze their effect values quantitatively.ConclusionPatients with post-stroke depression may benefit from repetitive transcranial magnetic stimulation. However, in terms of the quality of the reports, the methodology, and the quality of the evidence, published systematic evaluations/meta-analyses are of low quality. We list the drawbacks of the current clinical trials of repetitive transcranial magnetic stimulation for post-stroke depression as well as potential therapeutic mechanisms. This information may serve as a guide for future clinical trials aiming to establish a solid foundation for the clinical efficacy of repetitive transcranial magnetic stimulation in the treatment of post-stroke depression.
Project description:BackgroundStrokes may cause some swallowing difficulty or associated dysphagia in 25-80% of patients. This phenomenon has been linked to increased morbidity and mortality. Therefore, the aim of this study was to evaluate the efficacy of transcranial direct current stimulation in patients with dysphagia in post-stroke patients.MethodsA systematic search in PubMed, Scopus, Web of Science and MEDLINE was conducted. The articles must have to evaluate an intervention that included transcranial direct current stimulation; the sample had to consist exclusively of patients with post-stroke dysphagia; and the experimental design consisted of randomized controlled trial. Difference in mean differences and their 95% confidence interval were calculated as the between-group difference in means divided by the pooled standard deviation. The I2 statistic was used to determine the degree of heterogeneity.ResultsOf the 9 investigations analyzed, all applied transcranial direct current stimulation in combination with conventional dysphagia therapy to the experimental group. All the studies analyzed identified improvements in swallowing function and meta-analysis confirmed their strong effect on reducing the risk of penetration and aspiration (Hedges's g = 0.55). The results showed that participants who received transcranial direct current stimulation significantly improved swallowing function.ConclusionsTranscranial direct current stimulation has positive effects in the treatment of poststroke dysphagia by improving swallowing function, oral and pharyngeal phase times and the risk of penetration and aspiration. Furthermore, its combination with conventional dysphagia therapy, balloon dilatation with catheter or training of the swallowing muscles ensures improvement of swallowing function. PROSPERO registration ID CRD42022314949.
Project description:This study investigates whether simultaneous high-definition transcranial direct current stimulation (HD-tDCS) enhances the effects of robot-assisted gait training in stroke patients. Twenty-four participants were randomly allocated to either the robot-assisted gait training with real HD-tDCS group (real HD-tDCS group) or robot-assisted gait training with sham HD-tDCS group (sham HD-tDCS group). Over four weeks, both groups completed 10 sessions. The 10 Meter Walk Test, Timed Up and Go, Functional Ambulation Category, Functional Reach Test, Berg Balance Scale, Dynamic Gait Index, Fugl-Meyer Assessment, and Korean version of the Modified Barthel Index were conducted before, immediately after, and one month after the intervention. The real HD-tDCS group showed significant improvements in the 10 Meter Walk Test, Timed Up and Go, Functional Reach Test, and Berg Balance Scale immediately and one month after the intervention, compared with before the intervention. Significant improvements in the Dynamic Gait Index and Fugl-Meyer Assessment were also observed immediately after the intervention. The sham HD-tDCS group showed no significant improvements in any of the tests. Application of HD-tDCS during robot-assisted gait training has a positive effect on gait and physical function in chronic stroke patients, ensuring long-term training effects. Our results suggest the effectiveness of HD-tDCS as a complementary tool to enhance robotic gait rehabilitation therapy in chronic stroke patients.
Project description:Recent findings indicate that measures derived from resting-state magnetoencephalography (rsMEG) are sensitive to cortical dysfunction in post-stroke aphasia. Spectral power and multiscale entropy (MSE) measures show that left-hemispheric areas surrounding the stroke lesion (perilesional) exhibit pathological oscillatory slowing and alterations in signal complexity. In the current study, we tested whether individually-targeted high-definition transcranial direct current stimulation (HD-tDCS) can reduce MEG abnormalities and transiently improve language performance. In eleven chronic aphasia survivors, we devised a method to localize perilesional areas exhibiting peak MSE abnormalities, and subsequently targeted these areas with excitatory/anodal-tDCS, or targeted the contralateral homolog areas with inhibitory/cathodal-tDCS, based on prominent theories of stroke recovery. Pathological MEG slowing in these patients was correlated with aphasia severity. Sentence/phrase repetition accuracy was assessed before and after tDCS. A delayed word reading task was administered inside MEG to assess tDCS-induced neurophysiological changes in relative power and MSE computed on the pre-stimulus and delay task time windows. Results indicated increases in repetition accuracy, decreases in contralateral theta (4-7 Hz) and coarse-scale MSE (slow activity), and increases in perilesional low-gamma (25-50 Hz) and fine-scale MSE (fast activity) after anodal-tDCS, indicating reversal of pathological abnormalities. RsMEG may be a sensitive measure for guiding therapeutic tDCS.
Project description:BackgroundPost-stroke depression (PSD) is not only a frequent neuropsychiatric manifestation secondary to stroke but is also associated with disability, poor rehabilitation outcomes, sleep disorders, cognitive impairment, and increased mortality. Transcranial direct current stimulation (tDCS), a primary modality of non-invasive brain stimulation (NIBS), has shown promising clinical results in the rehabilitation of patients with PSD recently. The primary aim of this systematic review is to assess the effects of tDCS on PSD.MethodsPubMed and Cochrane databases were used for paper identification up to May 2022. Only English language studies and published data were taken into consideration. The methodological quality of selected studies was assessed according to the modified Sackett Scale, based on Physiotherapy Evidence Database (PEDro) scores.ResultsSix experimental studies were included for the PSD treatment of tDCS and all of them reported that, following the intervention of tDCS, the experimental group shows a statistically significant decrease in the depression level in accordance with different assessment scales.ConclusionThis article simply aims at providing a comprehensive overview of the raw data reported in this field to date. Based on the current evidence, tDCS presents promising results for the treatment of PSD. Moreover, tDCS is also effective in PSD patients with aphasia or CPSP. However, an optimal stimulation protocol is needed to formulate. Thus, the development of robustly controlled, randomized, and high-quality clinical trials to further assess the utility of tDCS as a therapeutic tool for the treatment of PSD survivors is encouraged.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023322076, identifier: CRD42023322076.
Project description:BackgroundInvestigation of lobule-specific electric field effects of cerebellar transcranial direct current stimulation (ctDCS) on overground gait performance has not been performed, so this study aimed to investigate the feasibility of two lobule-specific bilateral ctDCS montages to facilitate overground walking in chronic stroke.MethodsTen chronic post-stroke male subjects participated in this repeated-measure single-blind crossover study, where we evaluated the single-session effects of two bilateral ctDCS montages that applied 2 mA via 3.14 cm2 disc electrodes for 15 min targeting (a) dentate nuclei (also, anterior and posterior lobes), and (b) lower-limb representations (lobules VIIb-IX). A two-sided Wilcoxon rank-sum test was performed at a 5% significance level on the percent normalized change measures in the overground gait performance. Partial least squares regression (PLSR) analysis was performed on the quantitative gait parameters as response variables to the mean lobular electric field strength as the predictors. Clinical assessments were performed with the Ten-Meter walk test (TMWT), Timed Up & Go (TUG), and the Berg Balance Scale based on minimal clinically important differences (MCID).ResultsThe ctDCS montage specific effect was found significant using a two-sided Wilcoxon rank-sum test at a 5% significance level for 'Step Time Affected Leg' (p = 0.0257) and '%Stance Time Unaffected Leg' (p = 0.0376). The changes in the quantitative gait parameters were found to be correlated to the mean electric field strength in the lobules based on PLSR analysis (R2 statistic = 0.6574). Here, the mean electric field strength at the cerebellar lobules, Vermis VIIIb, Ipsi-lesional IX, Vermis IX, Ipsi-lesional X, had the most loading and were positively related to the 'Step Time Affected Leg' and '%Stance Time Unaffected Leg,' and negatively related to the '%Swing Time Unaffected Leg,' '%Single Support Time Affected Leg.' Clinical assessments found similar improvement in the TMWT (MCID: 0.10 m/s), TUG (MCID: 8 s), and BBS score (MCID: 12.5 points) for both the ctDCS montages.ConclusionOur feasibility study found an association between the lobular mean electric field strength and the changes in the quantitative gait parameters following a single ctDCS session in chronic stroke. Both the ctDCS montages improved the clinical outcome measures that should be investigated with a larger sample size for clinical validation.Trial registrationBeing retrospectively registered.
Project description:Gait deficits are often persistent after stroke, and current rehabilitation methods do not restore normal gait for everyone. Targeted methods of focused gait therapy that meet the individual needs of each stroke survivor are needed. Our objective was to develop and test a combination protocol of simultaneous brain stimulation and focused stance phase training for people with chronic stroke (>6 months). We combined Transcranial Direct Current Stimulation (tDCS) with targeted stance phase therapy using Virtual Reality (VR)-assisted treadmill training and overground practice. The training was guided by motor learning principles. Five users (>6 months post-stroke with stance phase gait deficits) completed 10 treatment sessions. Each session began with 30 min of VR-assisted treadmill training designed to apply motor learning (ML)-based stance phase targeted practice. During the first 15 min of the treadmill training, bihemispheric tDCS was simultaneously delivered. Immediately after, users completed 30 min of overground (ML)-based gait training. The outcomes included the feasibility of protocol administration, gait speed, Timed Up and Go (TUG), Functional Gait Assessment (FGA), paretic limb stance phase control capability, and the Fugl-Meyer for lower extremity coordination (FMLE). The changes in the outcome measures (except the assessments of stance phase control capability) were calculated as the difference from baseline. Statistically and clinically significant improvements were observed after 10 treatment sessions in gait speed (0.25 ± 0.11 m/s) and FGA (4.55 ± 3.08 points). Statistically significant improvements were observed in TUG (2.36 ± 3.81 s) and FMLE (4.08 ± 1.82 points). A 10-session intervention combining tDCS and ML-based task-specific gait rehabilitation was feasible and produced clinically meaningful improvements in lower limb function in people with chronic gait deficits after stroke. Because only five users tested the new protocol, the results cannot be generalized to the whole population. As a contribution to the field, we developed and tested a protocol combining brain stimulation and ML-based stance phase training for individuals with chronic stance phase deficits after stroke. The protocol was feasible to administer; statistically and/or clinically significant improvements in gait function across an array of gait performance measures were observed with this relatively short treatment protocol.
Project description:Post-traumatic stress disorder (PTSD) is a prevalent and debilitating illness. While standard treatment with pharmacotherapy and psychotherapy may be effective, approximately 20 to 30% of patients remain symptomatic. These individuals experience depression, anxiety, and elevated rates of suicide. For treatment-resistant patients, there is a growing interest in the use of neuromodulation therapies, including transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS). We conducted a systematic review on the use of neuromodulation strategies for PTSD and pooled 13 randomized clinical trials (RCTs), 11 case series, and 6 case reports for analysis. Overall, most studies reported favorable outcomes in alleviating both PTSD and depressive symptoms. Although several RCTs described significant differences when active and sham stimulations were compared, others found marginal or nonsignificant differences between groups. Also positive were studies comparing PTSD symptoms before and after treatment. The side effect profile with all 3 modalities was found to be low, with mostly mild adverse events being reported. Despite these encouraging data, several aspects remain unknown. Given that PTSD is a highly heterogeneous condition that can be accompanied by distinct psychiatric diagnoses, defining a unique treatment for this patient population can be quite challenging. There has also been considerable variation across trials regarding stimulation parameters, symptomatic response, and the role of adjunctive psychotherapy. Future studies are needed to address these issues.