Project description:One important use of layered semiconductors such as molybdenum disulfide (MoS2) could be in making novel heterojunction devices leading to functionalities unachievable using conventional semiconductors. Here we demonstrate a metal-semiconductor-metal heterojunction photodetector, made of MoS2 and amorphous silicon (a-Si), with rise and fall times of about 0.3 ms. The transient response does not show persistent (residual) photoconductivity, unlike conventional a-Si devices where it may last 3-5 ms, thus making this heterojunction roughly 10X faster. A photoresponsivity of 210 mA/W is measured at green light, the wavelength used in commercial imaging systems, which is 2-4X larger than that of a-Si and best reported MoS2 devices. The device could find applications in large area electronics, such as biomedical imaging, where a fast response is critical.
Project description:We have investigated a new metallic core-shell nanowire (NW) geometry of that could be obtained experimentally, that is silicon (Si) and germanium (Ge) NWs with cores constituted by group-10 elements palladium (Pd) and platinum (Pt). These NWs are optimized with two different diameters of 1.5 Å and 2.5 Å. The nanowires having diameter of 1.5 Å show semi-metallic nature with GGA-PBE calculation and metallic nature while spin orbit interaction (SOC) is included. The quantum conductance of the NWs increases with the diameter of the nanowire. We have investigated current-voltage (IV) characteristics for the considered NWs. It has been found that current values in accordance with applied voltage show strong dependence on the diameter of the NWs. The optical study of the NWs shows that absorption co-efficient peak moves to lower energies; due to quantum confinement effect. Furthermore, we have extensively studied optical response of Pd and Pt based core-shell NWs in O2 and CO2 environment. Our study on Si and Ge based metallic core/shell NW show a comprehensive picture as possible electron connector in future nano-electronic devices as well as nano gas detector for detecting O2 gas.
Project description:The data presented in this paper refer to the research article "Dry and Hydrated Defective Molybdenum Disulfide/Graphene Bilayer Heterojunction Under Strain for Hydrogen Evolution from Water Splitting: A First-principle Study". Here, we present the Density Functional Theory (DFT) data used to generate optimal geometries and electronic structure for the MoS2/graphene heterostructure under strain, for dry and hydrated pristine and defect configurations. We also report DFT data used to obtain hydrogen Gibbs free energies for adsorption on the MoS2 monolayer and on graphene of the heterostructure. The DFT data were calculated using the periodic DFT code CRYSTAL17, which employs Gaussian basis functions, under the hybrid functionals PBE0 and HSE06. Moreover, we also report the data used for Quantum Theory of Atoms in Molecules (QTAIM) and Non-covalent Interaction (NCI) analysis calculations. These data were obtained using the optimized unit cell configurations from the periodic DFT and inputted to Gamess program, thus generating files that could be read by the Multiwfn program used for QTAIM and NCI calculations.
Project description:Two-dimensional (2D) molybdenum disulfide (MoS2 ) holds great promise in electronic and optoelectronic applications owing to its unique structure and intriguing properties. The intrinsic defects such as sulfur vacancies (SVs) of MoS2 nanosheets are found to be detrimental to the device efficiency. To mitigate this problem, functionalization of 2D MoS2 using thiols has emerged as one of the key strategies for engineering defects. Herein, we demonstrate an approach to controllably engineer the SVs of chemically exfoliated MoS2 nanosheets using a series of substituted thiophenols in solution. The degree of functionalization can be tuned by varying the electron-withdrawing strength of substituents in thiophenols. We find that the intensity of 2LA(M) peak normalized to A1g peak strongly correlates to the degree of functionalization. Our results provide a spectroscopic indicator to monitor and quantify the defect engineering process. This method of MoS2 defect functionalization in solution also benefits the further exploration of defect-free MoS2 for a wide range of applications.
Project description:Covalent functionalization of two-dimensional molybdenum disulfide (2D MoS2 ) holds great promise in developing robust organic-MoS2 hybrid structures. Herein, for the first time, we demonstrate an approach to building up a bisfunctionalized MoS2 hybrid structure through successively reacting activated MoS2 with alkyl iodide and aryl diazonium salts. This approach can be utilized to modify both colloidal and substrate supported MoS2 nanosheets. We have discovered that compared to the adducts formed through the reactions of MoS2 with diazonium salts, those formed through the reactions of MoS2 with alkyl iodides display higher reactivity towards further reactions with electrophiles. We are convinced that our systematic study on the formation and reactivity of covalently functionalized MoS2 hybrids will provide some practical guidance on multi-angle tailoring of the properties of 2D MoS2 for various potential applications.
Project description:Electrospun one-dimensional (1D) nanostructures are rapidly emerging as key enabling components in gas sensing due to their unique electrical, optical, magnetic, thermal, mechanical and chemical properties. 1D nanostructures have found applications in numerous areas, including healthcare, energy storage, biotechnology, environmental monitoring, and defence/security. Their enhanced specific surface area, superior mechanical properties, nanoporosity and improved surface characteristics (in particular, uniformity and stability) have made them important active materials for gas sensing applications. Such highly sensitive and selective elements can be embedded in sensor nodes for internet-of-things applications or in mobile systems for continuous monitoring of air pollutants and greenhouse gases as well as for monitoring the well-being and health in everyday life. Herein, we review recent developments of gas sensors based on electrospun 1D nanostructures in different sensing platforms, including optical, conductometric and acoustic resonators. After explaining the principle of electrospinning, we classify sensors based on the type of materials used as an active sensing layer, including polymers, metal oxide semiconductors, graphene, and their composites or their functionalized forms. The material properties of these electrospun fibers and their sensing performance toward different analytes are explained in detail and correlated to the benefits and limitations for every approach.
Project description:In this study, one-dimensional (1D) zinc oxide was loaded on the surface of cobalt oxide microspheres, which were assembled by single-crystalline porous nanosheets, via a simple heteroepitaxial growth process. This elaborate structure possessed an excellent transducer function from the single-crystalline feature of Co3O4 nanosheets and the receptor function from the zinc oxide nanorods. The structure of the as-prepared hybrid was confirmed via a Scanning Electron Microscope (SEM), X-ray diffraction (XRD), and a Transmission Electron Microscope (TEM). Gas-sensing tests showed that the gas-sensing properties of the as-designed hybrid were largely improved. The response was about 161 (Ra/Rg) to 100 ppm ethanol, which is 110 and 10 times higher than that of Co3O4 (Rg/Ra = 1.47) and ZnO (Ra/Rg = 15), respectively. And the as-designed ZnO/Co3O4 hybrid also showed a high selectivity to ethanol. The superior gas-sensing properties were mainly attributed to the as-designed nanostructures that contained a super transducer function and a super receptor function. The design strategy for gas-sensing materials in this work shed a new light on the exploration of high-performance gas sensors.
Project description:Molybdenum sulfide is a potent hydrogen evolution catalyst, and is discussed as a replacement of platinum in large-scale electrochemical hydrogen production. To learn more about the elementary steps of MoS2 production by sputtering in the presence of dimethyl disulfide (DMDS), the reactions of Mox +, x = 1-3, with DMDS are studied by Fourier transform ion cyclotron resonance mass spectrometry and density functional theory calculations. A rich variety of products composed of molybdenum, sulfur, carbon and hydrogen was observed. MoxSy + species are formed in the first reaction step, together with products containing carbon and hydrogen. The calculations indicate that the strong Mo-S bonds are formed preferentially, followed by Mo-C bonds. Hydrogen is exclusively bound to carbon atoms, i.e. no insertion of a molybdenum atom into a C-H bond is observed. The reactions are efficient and highly exothermic, explaining the rich chemistry observed in the experiment.
Project description:In this paper, we report the first successful demonstration of the direct growth of high-quality two-dimensional (2D) MoS2 semiconductors on a flexible substrate using a 25-μm-thick Yttria-stabilized zirconia ceramic substrate. Few-layered MoS2 crystals grown at 800 °C showed a uniform crystal size of approximately 50 μm, which consisted of about 10 MoS2 layers. MoS2 crystals were characterized using energy-dispersive X-ray spectroscopy. Raman spectroscopy was performed to investigate the crystal quality under bending conditions. The Raman mapping revealed a good uniformity with a stable chemical composition of the MoS2 crystals. Our approach offers a simple and effective route to realize various flexible electronics based on MoS2. Our approach can be applied for MoS2 growth and for other 2D materials. Therefore, it offers a new opportunity that allows us to demonstrate high-performance flexible electronic/optoelectronic applications in a less expensive, simpler, and faster manner without sacrificing the intrinsic performance of 2D materials.
Project description:Molybdenum disulfide (MoS2) is being studied for a wide range of applications including lithium-ion batteries and hydrogen evolution reaction catalysts. In this paper, we present a single-step nonthermal plasma-enhanced chemical vapor deposition (PECVD) process for the production of two-dimensional MoS2. This method provides an alternative route to established CVD and plasma synthesis routes. The approach presented here synthesizes films in only a few minutes using elemental sulfur (S8) and molybdenum pentachloride (MoCl5) as precursors. Deposition utilizes a nonthermal inductively coupled plasma reactor and temperatures around 500 °C. Film growth characteristics and nucleation are studied as a function of precursor concentrations, argon flow rate, plasma power, and deposition time. Few-layer two-dimensional (MoS2) films were formed at low precursor concentrations. Films with nanoparticle-like features were formed when the precursor concentration was high. Noncontinuous nonstoichiometric films were found at low plasma power, while high plasma power led to continuous films with good stoichiometry. The vacancies and defects in these films may provide active sites for hydrogen evolution.