Project description:BackgroundSome recent studies have reported the role of circular RNAs (circRNAs) in modulating the tumorigenesis of human malignancies. Nevertheless, the expression characteristics, biological functions, and regulatory mechanism of circ_0000189 in glioma are unclear.MethodsQuantitative real-time polymerase chain reaction (qRT-PCR) was utilized to detect the expression levels of circ_0000189, miR-192-5p, and ZEB2 mRNA in glioma tissues and cells. The association between the expression of circ_0000189 and the clinicopathological indicators and the features of magnetic resonance imaging (MRI) images of glioma patients were analyzed. Western blot was utilized to evaluate ZEB2 expression and epithelial-mesenchymal transition (EMT-)-related proteins (E-cadherin, N-cadherin, as well as Vimentin) in glioma cells. Cell proliferation was assessed employing cell counting kit-8 (CCK-8) and EdU experiments. Flow cytometry was used to detect the apoptotic rate of the cells. Cell migration and invasion were accessed employing Transwell assay. Moreover, dual luciferase reporter gene assay and RNA immunoprecipitation assay were employed to investigate the targeting relationship between miR-192-5p and circ_0000189, miR-192-5p, and ZEB2. Subcutaneous tumorigenesis experiment and lung metastasis experiment in nude mice were conducted to verify the regulatory function of circ_0000189 on the proliferation and metastasis of glioma cells in vivo.Resultscirc_0000189 was markedly overexpressed in glioma tissues and cell lines. Its high expression was associated with poor clinical pathological indicators and adverse MRI signs. Gain-of-function experiments and loss-of-function experiments confirmed that circ_0000189 overexpression facilitated the proliferation and migration, as well as invasion of glioma cells, and suppressed apoptosis, and facilitated epithelial-mesenchymal transition (EMT) process. Compared to the control group, knocking down circ_0000189 suppressed the malignant phenotypes of glioma cells both in vivo and in vitro. Working as a competitive endogenous RNA, circ_0000189 directly targeted miR-192-5p, and repressed its expression, and circ_0000189 positively modulated ZEB2 expression indirectly via repressing miR-192-5p.Conclusioncirc_0000189 facilitates the progression of glioma by modulating miR-192-5p/ZEB2 axis.
Project description:Circular RNAs are a subgroup of non-coding RNAs and generated by a mammalian genome. Herein, the expression and function of circular RNA circ-TTBK2 were investigated in human glioma cells.Fluorescence in situ hybridization and quantitative real-time PCR were conducted to profile the cell distribution and expression of circ-TTBK2 and microRNA-217 (miR-217) in glioma tissues and cells. Immunohistochemical and western blot were used to determine the expression of HNF1? and Derlin-1 in glioma tissues and cells. Stable knockdown of circ-TTBK2 or overexpression of miR-217 glioma cell lines (U87 and U251) were established to explore the function of circ-TTBK2 and miR-217 in glioma cells. Further, luciferase reports and RNA immunoprecipitation were used to investigate the correlation between circ-TTBK2 and miR-217. Cell Counting Kit-8, transwell assays, and flow cytometry were used to investigate circ-TTBK2 and miR-217 function including cell proliferation, migration and invasion, and apoptosis, respectively. ChIP assays were used to ascertain the correlations between HNF1? and Derlin-1.We found that circ-TTBK2 was upregulated in glioma tissues and cell lines, while linear TTBK2 was not dysregulated in glioma tissues and cells. Enhanced expression of circ-TTBK2 promoted cell proliferation, migration, and invasion, while inhibited apoptosis. MiR-217 was downregulated in glioma tissues and cell lines. We also found that circ-TTBK2, but not linear TTBK2, acted as miR-217 sponge in a sequence-specific manner. In addition, upregulated circ-TTBK2 decreased miR-217 expression and there was a reciprocal negative feedback between them in an Argonaute2-dependent manner. Moreover, reintroduction of miR-217 significantly reversed circ-TTBK2-mediated promotion of glioma progression. HNF1? was a direct target of miR-217, and played oncogenic role in glioma cells. Remarkably, circ-TTBK2 knockdown combined with miR-217 overexpression led to tumor regression in vivo.These results demonstrated a novel role circ-TTBK2 in the glioma progression.
Project description:BACKGROUND:Circular RNA nuclear factor I X (circNFIX) has been reported to play an important role in glioma progression. However, the mechanism by which circNFIX participates in glioma progression remains poorly understood. METHODS:GERIA online were used to analyze the abnormally expressed genes in glioma tissues. The expression levels of circNFIX, microRNA (miR)-378e and Ribophorin-II (RPN2) were measured by quantitative real-time polymerase chain reaction or western blot. Cell cycle distribution, apoptosis, glycolysis, migration and invasion were determined by flow cytometry, special kit and trans-well assays, respectively. The target association between miR-378e and circNFIX or RPN2 was confirmed by luciferase reporter assay, RNA immunoprecipitation and pull-down. Xenograft model was established to investigate the role of circNFIX in vivo. RESULTS:The expression of circNFIX was enhanced in glioma tissues and cells compared with matched controls and high expression of circNFIX indicated poor outcomes of patients. Knockdown of circNFIX led to arrest of cell cycle, inhibition of glycolysis, migration and invasion and promotion of apoptosis in glioma cells. circNFIX was a sponge of miR-378e. miR-378e overexpression suppressed cell cycle process, glycolysis, migration and invasion but promoted apoptosis. miR-378e silence abated the suppressive role of circNFIX knockdown in glioma progression. RPN2 as a target of miR-378e was positively regulated via circNFIX by competitively sponging miR-378e. Silencing circNFIX decreased glioma xenograft tumor growth by regulating miR-378e/RPN2 axis. CONCLUSION:Knockdown of circNFIX inhibits progression of glioma in vitro and in vivo by increasing miR-378e and decreasing RPN2, providing a novel mechanism for understanding the pathogenesis of glioma.
Project description:BackgroundLong noncoding RNAs (lncRNAs) play crucial roles in tumor progression and are aberrantly expressed in various cancers. However, the functional roles of lncRNAs in breast cancer remain largely unknown.MethodsBased on public databases and integrating bioinformatics analyses, the overexpression of lncRNA BCRT1 in breast cancer tissues was detected and further validated in a cohort of breast cancer tissues. The effects of lncRNA BCRT1 on proliferation, migration, invasion and macrophage polarization were determined by in vitro and in vivo experiments. Luciferase reporter assay and RNA immunoprecipitation (RIP) were carried out to reveal the interaction between lncRNA BCRT1, miR-1303, and PTBP3. Chromatin immunoprecipitation (ChIP) and RT-PCR were used to evaluate the regulatory effect of hypoxia-inducible factor-1α (HIF-1α) on lncRNA BCRT1.ResultsLncRNA BCRT1 was significantly upregulated in breast cancer tissues, which was correlated with poor prognosis in breast cancer patients. LncRNA BCRT1 knockdown remarkably suppressed tumor growth and metastasis in vitro and in vivo. Mechanistically, lncRNA BCRT1 could competitively bind with miR-1303 to prevent the degradation of its target gene PTBP3, which acts as a tumor-promoter in breast cancer. LncRNA BCRT1 overexpression could promote M2 polarization of macrophages, mediated by exosomes, which further accelerated breast cancer progression. Furthermore, lncRNA BCRT1 was upregulated in response to hypoxia, which was attributed to the binding of HIF-1α to HREs in the lncRNA BCRT1 promoter.ConclusionsCollectively, these results reveal a novel HIF-1α/lncRNA BCRT1/miR-1303/PTBP3 pathway for breast cancer progression and suggest that lncRNA BCRT1 might be a potential biomarker and therapeutic target for breast cancer.
Project description:ObjectiveOsteoporosis is a progressive systemic skeletal disorder. Multiple profiling studies have contributed to characterizing biomarkers and therapeutic targets for osteoporosis. However, due to the limitation of the platform of miRNA sequencing, only a part of miRNA can be sequenced based on one platform.Materials and methodsIn this study, we performed miRNA sequencing in osteoporosis bone samples based on a novel platform Illumina Hiseq 2500. Bioinformatics analysis was performed to construct osteoporosis-related competing endogenous RNA (ceRNA) networks. Gene interference and osteogenic induction were used to examine the effect of identified ceRNA networks on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (HBMSCs).ResultsmiR-1303 was lowly expressed, while cochlin (COCH) and KCNMA1-AS1 were highly expressed in the osteoporosis subjects. COCH knockdown improved the osteogenic differentiation of HBMSCs. Meanwhile, COCH inhibition compensated for the suppression of osteogenic differentiation of HBMSCs by miR-1303 knockdown. Further, KCNMA1-AS1 knockdown promoted osteogenic differentiation of HBMSCs through downregulating COCH by sponging miR-1303.ConclusionsOur findings suggest that the KCNMA1-AS1/miR-1303/COCH axis is a promising biomarker and therapeutic target for osteoporosis.
Project description:Our objective was to determine the molecular mechanisms by which lncRNA HOXA-AS3 regulates the biological behaviour of glioblastoma multiforme (GBM). We used an lncRNA microarray assay to identify GBM-related lncRNA expression profiles. Qrt-PCR was used to survey the levels of expression of long non-coding RNA (lncRNA) HOXA-AS3 and the target gene. Dual-luciferase reporter assays were used to investigate the interaction of lncRNA HOXA-AS3, the target gene and miRNA. Western blot analysis was used to examine the expression of USP3 and epithelial-mesenchymal transition (EMT) genes. The MTT assay, transwell assay and wound healing assay were used to analyse the effects of lncRNA HOXA-AS3 on GBM cell viability, mobility and invasiveness, respectively. Our results showed that lncRNA HOXA-AS3 was significantly up-regulated in GBM cells and could promote GBM cell proliferation, invasion and migration in vitro and in vivo. HOXA-AS was found to be associated with poor survival prognosis in glioma patients. The dual-luciferase reporter assay also revealed that lncRNA HOXA-AS3 acts as a mir-455-5p sponge by up-regulating USP3 expression to promote GBM progression. Western blot analysis showed that lncRNA HOXA-AS3 could up-regulate EMT-related gene expression in GBM. Experiments showed mir-455-5p could rescue the effect of lncRNA HOXA-AS3 on cell proliferation and invasion. The newly identified HOXA-AS3/mir-455-5p/USP3 pathway offers important clues to understanding the key mechanisms underlying the action of lncRNA HOXA-AS3 in glioblastoma.
Project description:Glioma is the most prevalent and lethal primary brain tumour. Abundant long non-coding RNAs ( lncRNAs) are aberrant and play crucial roles in the oncogenesis of glioma. The exact functions of linc00475 in glioma remain blurred. Here, we analysed the expression levels of linc00475 by qRT-PCR and discovered that linc00475 was up-regulated in glioma and predicted a poor prognosis in patients with glioma. Besides, inhibiting linc00475 restrained the progression of glioma in vitro and in vivo. Further experiments confirmed that linc00475 regulated the progression of glioma by acting as a sponge for miR-141-3p. Moreover, we detected the binding sites of linc00475 and miR-141-3p, the YAP1- 3'UTR and miR-141-3p by luciferase reporters. The rescue assays confirmed that inhibiting linc00475 restrained the progression of glioma through the miR-141-3p/YAP1 pathway. Collectively, our research demonstrates the key roles of linc00475 in glioma, which could be a promising therapeutic target.
Project description:BackgroundThe GATAD1 gene overexpression induced by GATAD1 amplification upregulation is detected in different human tumors. To date, the relationship between GATAD1 amplification and glioma oncogenesis and malignancy is still unknown.MethodsGATAD1 gene amplification and expression were analyzed in 187 gliomas using qPCR and immunostaining. The relation of GATAD1 to patients' prognoses was assessed via the Kaplan-Meier method. The MTT and orthotopic tumor transplantation assays were used to identify the function of GATAD1 in glioma proliferation. cDNA microarray, ChIP qPCR, EMSA and 3C were used to screen the downstream mechanism of GATAD1 regulating glioma proliferation.ResultsOur results indicated that GATAD1 gene amplification and GATAD1 gene expression are novel independent diagnosis biomarkers to indicate poor outcome of glioma patients. GATAD1 knockdown can remarkably suppress GBM cell proliferation both in vitro and in vivo. GATAD1 could promote CCND1 gene transcription by inducing long range chromatin architectural interaction on the CCND1 promoter. Then GATAD1 sequentially accelerates GBM cell cycle transition and proliferation via regulating CCND1.ConclusionsWe identify GATAD1 as a novel potential diagnosis biomarker and promising prognosis predictor in glioma patients. Functionally, we confirm GATAD1 as an epigenetic chromatin topological regulator that promotes glioma proliferation by targeting CCND1.
Project description:Accumulating evidence indicates long noncoding RNAs (lncRNA) play a vital role in tumor progression. However, the role of linc00645-induced accelerated malignant behavior in glioblastoma (GBM) remains unknown. In the present study, linc00645 expression was significantly upregulated in GBM tissues and cell lines. High level of linc00645 was associated with poor overall survival in GBM patients. Knockdown of linc00645 suppressed the proliferation, stemness, migration, invasion, and reversed transforming growth factor (TGF)-β-induced motility of glioma cell lines. Furthermore, linc00645 directly interacted with miR-205-3p and upregulated of miR-205-3p impeded efficiently the increase of ZEB1 induced by linc00645 overexpression. Moreover, knockdown of linc00645 significantly suppressed the progression of glioma cells in vivo. miR-205-3p was a target of linc00645 and linc00645 modulates TGF-β-induced glioma cell migration and invasion via miR-205-3p. Taken together, our findings identified the linc00645/miR-205-3p/ZEB1 signaling axis as a key player in EMT of glioma cells triggered by TGF-β. These data elucidated that linc00645 plays an oncogenic role in glioma and it may serve as a prognostic biomarker and a potential therapeutic target for the treatment of glioma in humans.
Project description:Rationale: Glioma is the most common primary malignant tumor of human central nervous system, and its rich vascular characteristics make anti-angiogenic therapy become a therapeutic hotspot. However, the existence of glioma VM makes the anti-angiogenic therapy ineffective. SUMOylation is a post-translational modification that affects cell tumorigenicity by regulating the expression and activity of substrate proteins. Methods: The binding and modification of IGF2BP2 and SUMO1 were identified using Ni2+-NTA agarose bead pull-down assays, CO-IP and western blot; and in vitro SUMOylation assays combined with immunoprecipitation and immunofluorescence staining were performed to explore the detail affects and regulations of the SUMOylation on IGF2BP2. RT-PCR and western blot were used to detect the expression levels of IGF2BP2, OIP5-AS1, and miR-495-3p in glioma tissues and cell lines. CCK-8 assays, cell transwell assays, and three-dimensional cell culture methods were used for evaluating the function of IGF2BP2, OIP5-AS1, miR-495-3p, HIF1A and MMP14 in biological behaviors of glioma cells. Meantime, RIP and luciferase reporter assays were used for inquiring into the interactions among IGF2BP2, OIP5-AS1, miR-495-3p, HIF1A and MMP14. Eventually, the tumor xenografts in nude mice further as certained the effects of IGF2BP2 SUMOylation on glioma cells. Results: This study proved that IGF2BP2 mainly binds to SUMO1 and was SUMOylated at the lysine residues K497, K505 and K509 sites, which can be reduced by SENP1. SUMOylation increased IGF2BP2 protein expression and blocked its degradation through ubiquitin-proteasome pathway, thereby increasing its stability. The expressions of IGF2BP2 and OIP5-AS1 were up-regulated and the expression of miR-495-3p was down-regulated in both glioma tissues and cells. IGF2BP2 enhances the stability of OIP5-AS1, thereby increasing the binding of OIP5-AS1 to miR-495-3p, weakening the binding of miR-495-3p to the 3'UTR of HIF1A and MMP14 mRNA, and ultimately promoting the formation of VM in glioma. Conclusions: This study first revealed that SUMOylation of IGF2BP2 regulated OIP5-AS1/miR-495-3p axis to promote VM formation in glioma cells and xenografts growth in nude mice, providing a new idea for molecular targeted therapy of glioma.