Project description:Previous work examining the therapeutic efficacy of adjunct thymosin beta 4 (Tβ4) to ciprofloxacin for ocular infectious disease has revealed markedly reduced inflammation (inflammatory mediators and innate immune cells) with increased activation of wound healing pathways. Understanding the therapeutic mechanisms of action have further revealed a synergistic effect with ciprofloxacin to enhance bacterial killing along with a regulatory influence over macrophage effector cell function. As a natural extension of the aforementioned work, the current study uses an experimental model of P. aeruginosa-induced keratitis to examine the influence of Tβ4 regarding polymorphonuclear leukocyte (PMN/neutrophil) cellular function, contributing to improved disease response. Flow cytometry was utilized to phenotypically profile infiltrating PMNs after infection. The generation of reactive oxygen species (ROS), neutrophil extracellular traps (NETs), and PMN apoptosis were investigated to assess the functional activities of PMNs in response to Tβ4 therapy. In vitro work using peritoneal-derived PMNs was similarly carried out to verify and extend our in vivo findings. The results indicate that the numbers of infiltrated PMNs into infected corneas were significantly reduced with adjunctive Tβ4 treatment. This was paired with the downregulated expression of proinflammatory markers on these cells, as well. Data generated from PMN functional studies suggested that the corneas of adjunctive Tβ4 treated B6 mice exhibit a well-regulated production of ROS, NETs, and limited PMN apoptosis. In addition to confirming the in vivo results, the in vitro findings also demonstrated that neutrophil elastase (NE) was unnecessary for NETosis. Collectively, these data provide additional evidence that adjunctive Tβ4 + ciprofloxacin treatment is a promising option for bacterial keratitis that addresses both the infectious pathogen and cellular-mediated immune response, as revealed by the current study.
Project description:ObjectivesTo investigate the role of dibenzazepine (DBZ) in promoting supporting cell (SC) proliferation and hair cell (HC) regeneration in the inner ear.Materials and methodsPostnatal day 1 wild-type or neomycin-damaged mouse cochleae were cultured with DBZ. Immunohistochemistry and scanning electron microscopy were used to examine the morphology of cochlear cells, and high-throughput RNA-sequencing was used to measure gene expression levels.ResultsWe found that DBZ promoted SC proliferation and HC regeneration in a dose-dependent manner in both normal and damaged cochleae. In addition, most of the newly regenerated HCs induced by DBZ had visible and relatively mature stereocilia bundle structures. Finally, RNA sequencing detected the differentially expressed genes between DBZ treatment and controls, and interaction networks were constructed for the most highly differentially expressed genes.ConclusionsOur study demonstrates that DBZ can significantly promote SC proliferation and increase the number of mitotically regenerated HCs with relatively mature stereocilia bundles in the neonatal mouse cochlea by inhibiting Notch signalling and activating Wnt signalling, suggesting the DBZ might be a new therapeutic target for stimulating HC regeneration.
Project description:Thymosin beta-4 (Tβ4) is known to induce hair growth and hair follicle (HF) development; however, its mechanism of action is unknown. We generated mice that overexpressed Tβ4 in the epidermis, as well as Tβ4 global knockout mice, to study the role of Tβ4 in HF development and explore the mechanism of Tβ4 on hair growth. To study Tβ4 function, we depilated control and experimental mice and made tissue sections stained with hematoxylin and eosin (H&E). To explore the effect of Tβ4 on hair growth and HF development, the mRNA and protein levels of Tβ4 and VEGF were detected by real-time PCR and western blotting in control and experimental mice. Protein expression levels and the phosphorylation of P38, ERK and AKT were also examined by western blotting. The results of depilation indicated that hair re-growth was faster in Tβ4-overexpressing mice, but slower in knockout mice. Histological examination revealed that Tβ4-overexpressing mice had a higher number of hair shafts and HFs clustered together to form groups, while the HFs of control mice and knockout mice were separate. Hair shafts in knockout mice were significantly reduced in number compared with control mice. Increased Tβ4 expression at the mRNA and protein levels was confirmed in Tβ4-overexpressing mice, which also had increased VEGF expression. On the other hand, knockout mice had reduced levels of VEGF expression. Mechanistically, Tβ4-overexpressing mice showed increased protein expression levels and phosphorylation of P38, ERK and AKT, whereas knockout mice had decreased levels of both expression and phosphorylation of these proteins. Tβ4 appears to regulate P38/ERK/AKT signaling via its effect on VEGF expression, with a resultant effect on the speed of hair growth, the pattern of HFs and the number of hair shafts.
Project description:AimsThe adult mammalian heart is a post-mitotic organ. Even in response to necrotic injuries, where regeneration would be essential to reinstate cardiac structure and function, only a minor percentage of cardiomyocytes undergo cytokinesis. The gene programme that promotes cell division within this population of cardiomyocytes is not fully understood. In this study, we aimed to determine the gene expression profile of proliferating adult cardiomyocytes in the mammalian heart after myocardial ischaemia, to identify factors to can promote cardiac regeneration.Methods and resultsHere, we demonstrate increased 5-ethynyl-2'deoxyuridine incorporation in cardiomyocytes 3 days post-myocardial infarction in mice. By applying multi-colour lineage tracing, we show that this is paralleled by clonal expansion of cardiomyocytes in the borderzone of the infarcted tissue. Bioinformatic analysis of single-cell RNA sequencing data from cardiomyocytes at 3 days post ischaemic injury revealed a distinct transcriptional profile in cardiomyocytes expressing cell cycle markers. Combinatorial overexpression of the enriched genes within this population in neonatal rat cardiomyocytes and mice at postnatal day 12 (P12) unveiled key genes that promoted increased cardiomyocyte proliferation. Therapeutic delivery of these gene cocktails into the myocardial wall after ischaemic injury demonstrated that a combination of thymosin beta 4 (TMSB4) and prothymosin alpha (PTMA) provide a permissive environment for cardiomyocyte proliferation and thereby attenuated cardiac dysfunction.ConclusionThis study reveals the transcriptional profile of proliferating cardiomyocytes in the ischaemic heart and shows that overexpression of the two identified factors, TMSB4 and PTMA, can promote cardiac regeneration. This work indicates that in addition to activating cardiomyocyte proliferation, a supportive environment is a key for regeneration to occur.
Project description:Tissue regeneration is a process that recapitulates and restores organ structure and function. Although previous studies have demonstrated wound-induced hair neogenesis (WIHN) in laboratory mice (Mus), the regeneration is limited to the center of the wound unlike those observed in African spiny (Acomys) mice. Tissue mechanics have been implicated as an integral part of tissue morphogenesis. Here, we use the WIHN model to investigate the mechanical and molecular responses of laboratory and African spiny mice, and report these models demonstrate opposing trends in spatiotemporal morphogenetic field formation with association to wound stiffness landscapes. Transcriptome analysis and K14-Cre-Twist1 transgenic mice show the Twist1 pathway acts as a mediator for both epidermal-dermal interactions and a competence factor for periodic patterning, differing from those used in development. We propose a Turing model based on tissue stiffness that supports a two-scale tissue mechanics process: (1) establishing a morphogenetic field within the wound bed (mm scale) and (2) symmetry breaking of the epidermis and forming periodically arranged hair primordia within the morphogenetic field (μm scale). Thus, we delineate distinct chemo-mechanical events in building a Turing morphogenesis-competent field during WIHN of laboratory and African spiny mice and identify its evo-devo advantages with perspectives for regenerative medicine.
Project description:Chemotherapy-induced alopecia and hair loss can be stressful in patients with cancer. The hair grows back, but sometimes the hair tends to stay thin. Therefore, understanding mechanisms regulating hair regeneration may improve the management of chemotherapy-induced alopecia. Previous studies have revealed that chemotherapeutic agents induce a hair follicle vascular injury. As hair growth is associated with micro-vessel regeneration, we postulated that the stimulation of angiogenesis might enhance hair regeneration. In particular, mice treated with 5-fluorouracil (5-FU) showed delayed anagen initiation and reduced capillary density when compared with untreated controls, suggesting that the retardation of anagen initiation by 5-FU treatment may be attributed to the loss of perifollicular micro-vessels. We investigated whether the ETS transcription factor ETV2 (aka ER71), critical for vascular development and regeneration, can promote angiogenesis and hair regrowth in a 5-FU-induced alopecia mouse model. Tie2-Cre; Etv2 conditional knockout (CKO) mice, which lack Etv2 in endothelial cells, presented similar hair regrowth rates as the control mice after depilation. Following 5-FU treatment, Tie2-Cre; Etv2 CKO mice revealed a significant reduction in capillary density, anagen induction, and hair restoration when compared with controls. Mice receiving lentiviral Etv2 injection after 5-FU treatment showed significantly improved anagen induction and hair regrowth. Two-photon laser scanning microscopy revealed that enforced Etv2 expression restored normal vessel morphology after 5-FU mediated vessel injury. Our data suggest that vessel regeneration strategies may improve hair regrowth after chemotherapeutic treatment.
Project description:Strategies to overcome irreversible cochlear hair cell (HC) damage and loss in mammals are of vital importance to hearing recovery in patients with permanent hearing loss. In mature mammalian cochlea, co-activation of Myc and Notch1 reprograms supporting cells (SC) and promotes HC regeneration. Understanding of the underlying mechanisms may aid the development of a clinically relevant approach to achieve HC regeneration in the nontransgenic mature cochlea. By single-cell RNAseq, we show that MYC/NICD "rejuvenates" the adult mouse cochlea by activating multiple pathways including Wnt and cyclase activator of cyclic AMP (cAMP), whose blockade suppresses HC-like cell regeneration despite Myc/Notch activation. We screened and identified a combination (the cocktail) of drug-like molecules composing of small molecules and small interfering RNAs to activate the pathways of Myc, Notch1, Wnt and cAMP. We show that the cocktail effectively replaces Myc and Notch1 transgenes and reprograms fully mature wild-type (WT) SCs for HC-like cells regeneration in vitro. Finally, we demonstrate the cocktail is capable of reprogramming adult cochlea for HC-like cells regeneration in WT mice with HC loss in vivo. Our study identifies a strategy by a clinically relevant approach to reprogram mature inner ear for HC-like cells regeneration, laying the foundation for hearing restoration by HC regeneration.
Project description:Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Setd8 eliminated the contribution of bulge cells to hair follicle regeneration through inhibition of cell division and induction of cell death, but the growth and morphology of hair follicles were unaffected. Furthermore, ablation of Setd8 in the hair follicle bulge blocked the contribution of K19-postive stem cells to wounded epidermis, but the wound healing process was unaltered. Our data indicate that quiescent bulge stem cells are dispensable for hair follicle regeneration and epidermal injury in the short term and support the hypothesis that quiescent and cycling stem cell populations are equipotent.
Project description:Th22 cells are a novel subset of CD4+ T cells that primarily mediate biological effects through IL-22, with both Th22 cells and IL-22 being closely associated with multiple autoimmune and chronic inflammatory diseases. In this study, we investigated whether and how Th22 cells affect atherosclerosis. ApoE-/- mice and age-matched C57BL/6J mice were fed a Western diet for 0, 4, 8 or 12 weeks. The results of dynamic analyses showed that Th22 cells, which secrete the majority of IL-22 among the known CD4+ cells, play a major role in atherosclerosis. ApoE-/- mice fed a Western diet for 12 weeks and administered recombinant mouse IL-22 (rIL-22) developed substantially larger plaques in both the aorta and aortic root and higher levels of CD3+ T cells, CD68+ macrophages, collagen, IL-6, Th17 cells, dendritic cells (DCs) and pSTAT3 but lower smooth muscle cell (SMC) α-actin expression than the control mice. Treatment with a neutralizing anti-IL-22 monoclonal antibody (IL-22 mAb) reversed the above effects. Bone marrow-derived DCs exhibited increased differentiation into mature DCs following rIL-22 and ox-LDL stimulation. IL-17 and pSTAT3 were up-regulated after stimulation with IL-22 and ox-LDL in cells cocultured with CD4+ T cells and mature DC supernatant, but this up-regulation was significantly inhibited by IL-6mAb or the cell-permeable STAT3 inhibitor S31-201. Thus, Th22 cell-derived IL-22 aggravates atherosclerosis development through a mechanism that is associated with IL-6/STAT3 activation, DC-induced Th17 cell proliferation and IL-22-stimulated SMC dedifferentiation into a synthetic phenotype.
Project description:Animals have evolved two general strategies to counter injury and maintain physiological function. The most prevalent is protection by isolating vital organs into body cavities. However, protection is not optimal for sensory systems because their external components need to be exposed to the environment to fulfill their receptive function. Thus, a common strategy to maintain sensory abilities against persistent environmental insult involves repair and regeneration. However, whether age or frequent injuries affect the regenerative capacity of sensory organs remains unknown. We have found that neuromasts of the zebrafish lateral line regenerate mechanosensory hair cells after recurrent severe injuries and in adulthood. Moreover, neuromasts can reverse transient imbalances of Notch signaling that result in defective organ proportions during repair. Our results reveal inextinguishable hair-cell regeneration in the lateral line, and suggest that the neuromast epithelium is formed by plastic territories that are maintained by continuous intercellular communication.