Unknown

Dataset Information

0

The Role of Zn Ions in the Structural, Surface, and Gas-Sensing Properties of SnO2:Zn Nanocrystals Synthesized via a Microwave-Assisted Route.


ABSTRACT: Although semiconducting metal oxide (SMOx) nanoparticles (NPs) have attracted attention as sensing materials, the methodologies available to synthesize them with desirable properties are quite limited and/or often require relatively high energy consumption. Thus, we report herein the processing of Zn-doped SnO2 NPs via a microwave-assisted nonaqueous route at a relatively low temperature (160 °C) and with a short treatment time (20 min). In addition, the effects of adding Zn in the structural, electronic, and gas-sensing properties of SnO2 NPs were investigated. X-ray diffraction and high-resolution transmission electron microscopy analyses revealed the single-phase of rutile SnO2, with an average crystal size of 7 nm. X-ray absorption near edge spectroscopy measurements revealed the homogenous incorporation of Zn ions into the SnO2 network. Gas sensing tests showed that Zn-doped SnO2 NPs were highly sensitive to sub-ppm levels of NO2 gas at 150 °C, with good recovery and stability even under ambient moisture. We observed an increase in the response of the Zn-doped sample of up to 100 times compared to the pristine one. This enhancement in the gas-sensing performance was linked to the Zn ions that provided more surface oxygen defects acting as active sites for the NO2 adsorption on the sensing material.

SUBMITTER: da Silva LF 

PROVIDER: S-EPMC10781226 | biostudies-literature | 2023 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Role of Zn Ions in the Structural, Surface, and Gas-Sensing Properties of SnO<sub>2</sub>:Zn Nanocrystals Synthesized via a Microwave-Assisted Route.

da Silva Luís F LF   Lucchini Mattia A MA   Catto Ariadne C AC   Avansi Waldir W   Bernardini Sandrine S   Aguir Khalifa K   Niederberger Markus M   Longo Elson E  

Sensors (Basel, Switzerland) 20231226 1


Although semiconducting metal oxide (SMOx) nanoparticles (NPs) have attracted attention as sensing materials, the methodologies available to synthesize them with desirable properties are quite limited and/or often require relatively high energy consumption. Thus, we report herein the processing of Zn-doped SnO<sub>2</sub> NPs via a microwave-assisted nonaqueous route at a relatively low temperature (160 °C) and with a short treatment time (20 min). In addition, the effects of adding Zn in the st  ...[more]

Similar Datasets

| S-EPMC5430629 | biostudies-literature
| S-EPMC5960710 | biostudies-literature
| S-EPMC10863718 | biostudies-literature
| S-EPMC9506399 | biostudies-literature
| S-EPMC9201895 | biostudies-literature
| S-EPMC9501209 | biostudies-literature
| S-EPMC8154003 | biostudies-literature
| S-EPMC10500894 | biostudies-literature
| S-EPMC9231267 | biostudies-literature
| S-EPMC9132034 | biostudies-literature