Project description:White striping (WS) is an emerging myopathy of broiler chickens characterized by white striation of muscle. Despite the recent advances, the pathomechanism underlying the WS remains elusive. The aim of this study was to characterize morphological and molecular features of WS in broiler chickens. 50 pectoralis muscles were collected from 55 days old ROSS 308 broiler chickens with a mean weight of 3.5 kg. Samples were snap frozen and analyzed by histopathology, immunohistochemistry, and immunofluorescence. Real-time-PCR was used to evaluate the expression of different cytokines. Histological lesions were observed in all examined animals, both with and without macroscopic evidence of WS. WS muscles showed endomysial and perivascular inflammatory infiltrates of macrophages and cluster of differentiation (CD)8-positive T lymphocytes with severe myofiber atrophy, necrosis, fibrosis and replacement by adipose tissue. There was diffuse sarcoplasmic and sarcolemmal overexpression of the major histocompatibility complex class I (MHC I). The severity of the histologic lesions was positively correlated with the macroscopic degree of white striations. IL-6, IL-17 and lipopolysaccharide-induced TNF-α factor (LITAF) were overexpressed in severe lesions of WS. The presence of the CD8/MHC I complexes, together with the higher expression of IL-6, IL-17 and LITAF in severe degree of WS, suggest that the immune response may be involved in the progression of this myopathy and can be consistent with a hypoxia-induced inflammatory myopathy. These results help to understand the pathomechanism of WS contributing to the reduction of economic losses and improving poultry welfare.
Project description:The current study investigated the effects of intermittent feeding (IF) and fasting strategies at different times post-hatch on muscle growth and white striping (WS) breast development. In the first trial, 32 one-day-old Abor Acre broilers were fed ad libitum (AL) for 3 d post-hatch and then randomly allotted into 4 feeding strategies including AL, 1h-IF group (1 h IF, 4 times feeding/d, 1 h each time), 1.5h-IF (1.5 h IF, 4 times feeding/d, 1.5 h each time), and fasting (1d acute fasting, 6 d free access to feed) groups and fed for 7 d. Although angiogenic genes including VEGFA, VEGFR1, and VEGFR2, and myogenic genes including MYOG and MYOD were upregulated (P < 0.05), the breast muscle satellite cell (SC) number and PAX7, MYF5 expression were decreased by the IF strategies (P < 0.05). One-day fasting at 6 d of age also upregulated angiogenic genes and MYOD expression (P < 0.05), downregulated MYF5 expression (P < 0.05), but did not change SC number (P > 0.05). In the second trial, 384 one-day-old birds were fed AL for 1 wk and then randomly allotted to the above 4 feeding strategies starting at 8 d of age until 42 d of age. Similarly, IF and fasting strategies upregulated the expression of angiogenic and myogenic genes (P < 0.05). Both 1h-IF and 1.5h-IF increased breast muscle SC number (P < 0.05). At slaughter, breast muscle fiber diameter of 1.5h-IF was smaller but the SC number was larger than that of the birds fed AL (P < 0.05). The IF and fasting strategies prevented WS development, and reduced breast WS scores and triglyceride content (P < 0.05) without changing the body weight (P > 0.05). Fasting and 1h-IF reduced the expression of adipogenic genes ZNF423 and PDGFRα (P < 0.05). Moreover, IF and fasting strategies reduced fibrosis in breast muscle and reduced skeletal muscle-specific E3 ubiquitin ligases (TRIM63 and MAFBX) (P < 0.05). Fasting significantly reduced CASPASE-3 in breast muscle (P < 0.05). In conclusion, IF starting in the first week decreases SC number. Compared to AL, IF or fasting promotes muscular angiogenesis, increases SC number, prevents muscle degeneration, and prevents the development of WS without impairing the growth performance of broiler chickens.
Project description:White striping (WS) is a myopathy characterized by the appearance of white stripes parallel to the muscle fibers in the breast of broiler chickens, composed of adipose and connective tissues. This condition causes economic losses and, although common, its etiology remains poorly understood. Hence, the objective was to identify genes and biological mechanisms involved in the early stages of WS using a paternal broiler line that grows slightly slower than commercial ones, at 35 days of age, through the RNA sequencing of the pectoralis major muscle. Thirty genes were differentially expressed between normal and WS-affected chickens, with 23 upregulated and 7 downregulated in the affected broilers. Of these, 14 genes are novel candidates for WS and are implicated in biological processes related to muscle development (CEPBD, DUSP8, METTL21EP, NELL2, and UBE3D), lipid metabolism (PDK4, DDIT4, FKBP5, DGAT2, LIPG, TDH, and RGCC), and collagen (COL4A5 and COL4A6). Genes related to changes in muscle fiber type and the processes of apoptosis, autophagy, proliferation, and differentiation are possibly involved with the initial stage of WS development. In contrast, the genes linked to lipid metabolism and collagen may have their expression altered due to the progression of the myopathy.
Project description:Spaghetti meat (SM), woody breast (WB), and white striping (WS) are myopathies affecting breast muscle of broiler chickens, and are characterized by a loss of myofibers and an increase in fibrous tissue. The conditions develop in intensive broiler chicken production systems, and cause poor meat process-ability and negative customer perception leading to monetary losses. The objectives of the present study were to describe the physical and histological characteristics of breast myopathies from commercial broiler chicken flocks in Ontario, Canada, and to assess the associations between the severity of myopathies with the physical and histological characteristics of the affected breast muscle fillets. Chicken breast fillets (n = 179) were collected over 3 visits from a processing plant and scored macroscopically to assess the severity of myopathies, following an established scoring scheme. For each fillet, the surface area, length, width, thickness, weight, and hardness (compression force) were measured. A subset of 60 fillets was evaluated microscopically. Multinomial logistic regression models were built to evaluate associations between physical parameters and macroscopic scores. The odds of SM co-occurring with severe WB (SM1WB2) were significantly associated with increased fillet thickness (OR = 1.59, 95% CI 1.31-1.94) and weight (OR = 1.06, 95% CI 1.03-1.09). Histologically, myopathies had overlapping lesions consisting of polyphasic myodegeneration, perivascular inflammatory cuffing and accumulation of fibrous tissue and fat. The pairwise correlation between macroscopic and microscopic scores was moderate (rho 0.45, P < 0.001). This is the first study to characterize breast myopathies in Canadian broiler flocks. Results show that the morphologic and microscopic changes of fillets from this cohort are similar to data from other countries, and provide database to benchmark these parameters in future studies. Our standardized categorization can be applied to broiler breast fillets in other regions of the world.
Project description:BackgroundThis study evaluated the effects of supplemental xylanase and xylooligosaccharides (XOS) in a corn-soybean meal (SBM)-based diet on growth performance and intestinal health of broilers. A total of 288 day-old chicks (Cobb 500) were allocated to 36 floor pens (8 birds/pen) equally in 9 dietary treatments in a 3 × 3 factorial arrangement. The treatments were combinations of 3 levels of xylanase (0, 0.005% and 0.01% Econase XT) and 3 levels of prebiotics (0, 0.005% and 0.01% XOS) added to basal mash diets formulated in three phases (starter, d 0-14; grower, d 15-28; finisher, d 29-42). The feed intake and body weights were recorded weekly. On d 42, ileal sections were collected for histomorphometric and gene expression analysis, and cecal content was collected for determining short-chain fatty acids (SCFA) and microbiota.ResultsXylanase linearly (P < 0.01) increased the average daily gain (ADG) in both the finisher and total period and the final body weight gain (FBWG, 2940 & 2932 vs. 2760 g) of broilers. XOS did not significantly increase either ADG or FBWG (P > 0.05). Supplemental xylanase and XOS did not affect average daily feed intake and feed conversion ratio (P > 0.05). Xylanase and XOS did not change villus height (VH) or crypt depth (CD) ratio (P > 0.05). However, xylanase exhibited a trend (P = 0.097) on VH:CD ratio. The inclusion of 0.01% XOS without xylanase increased the level of IL-10 (a marker of anti-inflammatory cytokine) and IL-4 (a T-cell differentiation cytokine) genes compared with control (P < 0.05). The acetate production was increased by xylanase (P < 0.01) and XOS (P < 0.05) without an additive effect. Xylanase increased total SCFA (P < 0.01) while XOS had a tendency to increase (P = 0.052). Alpha and beta diversity of microbiota among treatments were not different (P > 0.05). However, the mean proportion of family Ruminococcaceae was increased by the supplemental 0.01% xylanase (P < 0.01).ConclusionIt can be concluded that XOS can enhance cecal fermentation, while xylanase can increase the body weight gain along with the fermentation metabolites in the ceca of broilers fed the corn-SBM-based diet but the effects may not always translate into an improved mucosal absorptive capacity and a better feed efficiency.
Project description:A feeding trial was conducted to assess the effect of partial replacement of dietary soybean meal by three plant protein sources: coconut, rocket seed, and black cumin meals with their combination in the presence or absence of nano-chitosan (NCH) on growth performance and immune response in broiler chickens. Five starter and grower diets were formulated and used from 1 to 42 days of age. The NCH was added to starter and grower diets at 1.0 g/kg. Five-hundred-fifty-day-old Arbor Acres Plus broiler chicks were randomly divided into ten treatments with five equal replications. Final body weight (FBW), body weight gain (BWG), feed intake (FI), feed conversion ratio (FCR), and blood plasma parameters were investigated. Histological aspects of lymphoid organs (thymus: T, bursa of Fabricius: B, and spleen: S) were characterized. Apart from added NCH, the FBW, BWG, and FCR of broilers fed the diets containing the tested plant proteins were significantly superior to the control ones. However, FI of birds fed the diets containing CM alone or combined with RSM plus BCM was significantly reduced. All experimental broilers displayed high plasma levels of IgG compared with the control group. There were significant increases in plasma concentrations of IgM, IgA, and T4 for groups that fed the diets containing RSM, BCM, and mixture of CM, RSM, and BCM compared with their controls. The T3 levels of broilers fed the tested plant proteins were significantly increased compared with the controls. Aside from plant protein source, broilers fed the NCH-enriched diets achieved significant increases in levels of IgM, TAC, and FSH and activities of CAT and SOD but reduced the MDA level compared with control. The interactions between plant protein source and added nano-chitosan were not interrelated. Furthermore, CM, RSM, and BCM can be used as complementary dietary proteins singly or combined with NCH with no adverse effects on growth performance. Addition of NCH molecules has a positive effect on live body weight and increases feed intake compared with control chicks.
Project description:Wooden breast (WB) and white striping (WS) are highly prevalent and economically damaging muscle disorders of modern commercial broiler chickens characterized respectively by palpable firmness and fatty white striations running parallel to the muscle fiber. High feed efficiency and rapid growth, especially of the breast muscle, are believed to contribute to development of such muscle defects; however, their etiology remains poorly understood. To gain insight into the genetic basis of these myopathies, a genome-wide association study was conducted using a commercial crossbred broiler population (n = 1193). Heritability was estimated at 0.5 for WB and WS with high genetic correlation between them (0.88). GWAS revealed 28 quantitative trait loci (QTL) on five chromosomes for WB and 6 QTL on one chromosome for WS, with the majority of QTL for both myopathies located in a ~ 8 Mb region of chromosome 5. This region has highly conserved synteny with a portion of human chromosome 11 containing a cluster of imprinted genes associated with growth and metabolic disorders such as type 2 diabetes and Beckwith-Wiedemann syndrome. Candidate genes include potassium voltage-gated channel subfamily Q member 1 (KCNQ1), involved in insulin secretion and cardiac electrical activity, lymphocyte-specific protein 1 (LSP1), involved in inflammation and immune response.
Project description:BackgroundWhite striping (WS) is an emerging muscular defect occurring on breast and thigh muscles of broiler chickens. It is characterized by the presence of white striations parallel to the muscle fibers and has significant consequences for meat quality. The etiology of WS remains poorly understood, even if previous studies demonstrated that the defect prevalence is related to broiler growth and muscle development. Moreover, recent studies showed moderate to high heritability values of WS, which emphasized the role of genetics in the expression of the muscle defect. The aim of this study was to identify the first quantitative trait loci (QTLs) for WS as well as breast muscle yield (BMY) and meat quality traits using a genome-wide association study (GWAS). We took advantage of two divergent lines of chickens selected for meat quality through Pectoralis major ultimate pH (pHu) and which exhibit the muscular defect. An expression QTL (eQTL) detection was further performed for some candidate genes, either suggested by GWAS analysis or based on their biological function.ResultsForty-two single nucleotide polymorphisms (SNPs) associated with WS and other meat quality traits were identified. They defined 18 QTL regions located on 13 chromosomes. These results supported a polygenic inheritance of the studied traits and highlighted a few pleiotropic regions. A set of 16 positional and/or functional candidate genes was designed for further eQTL detection. A total of 132 SNPs were associated with molecular phenotypes and defined 21 eQTL regions located on 16 chromosomes. Interestingly, several co-localizations between QTL and eQTL regions were observed which could suggest causative genes and gene networks involved in the variability of meat quality traits and BMY.ConclusionsThe QTL mapping carried out in the current study for WS did not support the existence of a major gene, but rather suggested a polygenic inheritance of the defect and of other studied meat quality traits. We identified several candidate genes involved in muscle metabolism and structure and in muscular dystrophies. The eQTL analyses showed that they were part of molecular networks associated with WS and meat quality phenotypes and suggested a few putative causative genes.
Project description:BackgroundA meta-analysis was conducted to assess dietary inorganic chromium supplementation on broiler growth performance and determine if these effects are regulated by strains, sex, or contextual factors such as study area and time.MethodsEligible studies were identified by searching Web of Science, Springer, Elsevier, Science Direct, Taylor & Francis online databases. The weighted average difference with corresponding 95% confidence interval was computed with a random-effects model. We performed subgroup analyses stratified by study locations, published years, broiler sex, and strains. The publication bias was assessed with Egger's test method. A total of nine studies were eligible for inclusion.ResultsThe meta-analysis results indicated that inorganic chromium supplementation significantly improved the broiler's growth performance, with a lower feed conversion ratio (FCR) and a higher average daily feed intake (ADFI). Through subgroup analyses, we found that the result of average daily gain (ADG) in Iran or published in the 2010s, the results of ADFI in Egypt, and the results of FCR in China had significant responses to chromium supplementation. We also found that Cobb 500 broilers and male broilers might be more sensitive to the addition of inorganic chromium by subgroup analyses. A model was used to obtain the amount of chromium addition under the optimal growth performance. The results showed that the adjusted ADFI and FCR presented a quadratic relationship with chromium supplementation except for average daily gain (ADG). The growth performance improved when the inorganic chromium addition ranged from 1.6 to 2.3 mg/kg. The result of sensitivity analyses showed low sensitivity and high stability. Also, there was little indication of publication bias for studies.ConclusionsOur study showed that the males and Cobb 500 broilers might be more sensitive to chromium supplementation and provided more accurate inorganic chromium supplementation for broiler management practice. The fewer included studies may lead to higher heterogeneity, and no subgroup analyses of environmental stress conditions was conducted due to the lack of related information. Therefore, this study still has some limitations, and we look forward to the follow-up researches.
Project description:ObjectiveA meta-analysis was conducted to assess the effects of dietary chromium picolinate (CrPic) supplementation on broiler growth performance and to determine whether such effects are regulated by broiler strains, sex, environmental stress, or contextual factors including study area and years.MethodsEligible studies were identified by searching the Web of Science, Springer, Elsevier, ScienceDirect, Taylor & Francis Online databases. Weighted average differences with corresponding 95% confidence intervals were computed with a random-effects model. We performed subgroup analysis stratified by study area, published years, broiler strains and sex, and environmental stress. Publication bias was assessed with Egger's test method. A total of 15 studies eligible for inclusion.ResultsThe results indicated that CrPic supplementation significantly improved broiler growth performance and subgroup analysis confirmed this conclusion. We also found that Ross 308 or male broilers might be more sensitive to CrPic supplementation and showed better growth performance. A model was used to obtain the amount of chromium addition under the optimal growth performance, which suggested that the maximum value of average daily gain (ADG) was reached when chromium addition was 1810 μg/kg. The results of the sensitivity analysis showed low sensitivity and high stability of the meta-analysis.ConclusionsCrPic supplementation had a positive effect on the growth performance of broilers, and this meta-analysis provides a more accurate value of chromium addition, which may be beneficial for the practice of the broiler industry.