Project description:BackgroundSeasonal influenza remains a major cause of morbidity and mortality in the USA. Despite the US Centers for Disease Control and Prevention recommendation promoting the early antiviral treatment of high-risk patients, treatment coverage remains low.MethodsTo evaluate the population-level impact of increasing antiviral treatment timeliness and coverage among high-risk patients in the USA, we developed an influenza transmission model that incorporates data on infectious viral load, social contact, and healthcare-seeking behavior. We modeled the reduction in transmissibility in treated individuals based on their reduced daily viral load. The reduction in hospitalizations following treatment was based on estimates from clinical trials. We calibrated the model to weekly influenza data from Texas, California, Connecticut, and Virginia between 2014 and 2019. We considered in the baseline scenario that 2.7-4.8% are treated within 48 h of symptom onset while an additional 7.3-12.8% are treated after 48 h of symptom onset. We evaluated the impact of improving the timeliness and uptake of antiviral treatment on influenza cases and hospitalizations.ResultsModel projections suggest that treating high-risk individuals as early as 48 h after symptom onset while maintaining the current treatment coverage level would avert 2.9-4.5% of all symptomatic cases and 5.5-7.1% of all hospitalizations. Geographic variability in the effectiveness of earlier treatment arises primarily from variabilities in vaccination coverage and population demographics. Regardless of these variabilities, we found that when 20% of the high-risk individuals were treated within 48 h, the reduction in hospitalizations doubled. We found that treatment of the elderly population (> 65 years old) had the highest impact on reducing hospitalizations, whereas treating high-risk individuals aged 5-19 years old had the highest impact on reducing transmission. Furthermore, the population-level benefit per treated individual is enhanced under conditions of high vaccination coverage and a low attack rate during an influenza season.ConclusionsIncreased timeliness and coverage of antiviral treatment among high-risk patients have the potential to substantially reduce the burden of seasonal influenza in the USA, regardless of influenza vaccination coverage and the severity of the influenza season.
Project description:Tuberculosis (TB) is one of the most common infectious diseases worldwide. It is estimated that one-third of the world's population is infected with TB. Most have the latent stage of the disease that can later transition to active TB disease. TB is spread by aerosol droplets containing Mycobacterium tuberculosis (Mtb). Mtb bacteria enter through the respiratory system and are attacked by the immune system in the lungs. The bacteria are clustered and contained by macrophages into cellular aggregates called granulomas. These granulomas can hold the bacteria dormant for long periods of time in latent TB. The bacteria can be perturbed from latency to active TB disease in a process called granuloma activation when the granulomas are compromised by other immune response events in a host, such as HIV, cancer, or aging. Dysregulation of matrix metalloproteinase 1 (MMP-1) has been recently implicated in granuloma activation through experimental studies, but the mechanism is not well understood. Animal and human studies currently cannot probe the dynamics of activation, so a computational model is developed to fill this gap. This dynamic mathematical model focuses specifically on the latent to active transition after the initial immune response has successfully formed a granuloma. Bacterial leakage from latent granulomas is successfully simulated in response to the MMP-1 dynamics under several scenarios for granuloma activation.
Project description:Clinical trials are costly and time-intensive endeavors, with a high rate of drug candidate failures. Moreover, the standard approaches often evaluate drugs under a limited number of protocols. In oncology, where multiple treatment protocols can yield divergent outcomes, addressing this issue is crucial. Here, we present a computational framework that simulates clinical trials through a combination of mathematical and statistical models. This approach offers a means to explore diverse treatment protocols efficiently and identify optimal strategies for oncological drug administration. We developed a computational framework with a stochastic mathematical model as its core, capable of simulating virtual clinical trials closely recapitulating the clinical scenarios. Testing our framework on the landmark SOLO-1 clinical trial investigating Poly-ADP-Ribose Polymerase maintenance treatment in high-grade serous ovarian cancer, we demonstrate that managing toxicity through treatment interruptions or dose reductions does not compromise treatment's clinical benefits. Additionally, we provide evidence suggesting that further reduction of hematological toxicity could significantly improve the clinical outcomes. The value of this computational framework lies in its ability to expedite the exploration of new treatment protocols, delivering critical insights pivotal to shaping the landscape of upcoming clinical trials.
Project description:Trypanosome RNA polymerase II transcription is polycistronic, individual mRNAs being excised by trans splicing and polyadenylation. In this study, we refined the previously published mathematical model for bloodstream form parasites and extended it to the procyclic form. We used the model, together with known mRNA half-lives, to predict the abundances of individual mRNAs, assuming rapid, unregulated mRNA processing; then we compared the results with measured mRNA abundances. Remarkably, the abundances of most mRNAs in procyclic forms are predicted quite well by the model, being largely explained by variations in mRNA decay rates and length. In bloodstream forms substantially more mRNAs are less abundant than predicted. We list mRNAs that are likely to show particularly slow or inefficient processing, either in both forms or with developmental regulation. We also measured ribosome occupancies of all mRNAs in trypanosomes grown in the same conditions as were used to measure mRNA turnover. In procyclic forms there was a weak positive correlation between ribosome density and mRNA half-life, suggesting cross-talk between translation and mRNA decay; ribosome density was related to the proportion of the mRNA on polysomes, indicating control of translation initiation. Ribosomal protein mRNAs in procyclics appeared to be exceptionally rapidly processed but poorly translated. Through this study, we conclude that lLevels of mRNAs in procyclic form trypanosomes are determined mainly by length and mRNA decay, with some control of precursor processing. In bloodstream forms variations in nuclear events play a larger role in transcriptome regulation, suggesting acquisition of new control mechanisms during adaptation to mammalian parasitism. Ribosome profiling and mRNA libraries were constructed in triplicate from in vitro PCF and in duplicate from in vitro T. brucei Lister427, to understand global differntial gene transcription.
Project description:RATIONALE:Data are limited regarding the safety of 12-dose once-weekly isoniazid (H, 900 mg) plus rifapentine (P, 900 mg) (3HP) for latent infection treatment during pregnancy. OBJECTIVES:To assess safety and pregnancy outcomes among pregnant women who were inadvertently exposed to study medications in two latent tuberculosis infection trials (PREVENT TB or iAdhere) evaluating 3HP and 9 months of daily isoniazid (H, 300 mg) (9H). METHODS:Data from reproductive-age (15-51 yr) women who received one or more study dose of 3HP or 9H in either trial were analyzed. Drug exposure during pregnancy occurred if the estimated date of conception was on or before the last dose date. RESULTS:Of 126 pregnancies (125 participants) that occurred during treatment or follow-up, 87 were exposed to study drugs. Among these, fetal loss was reported for 4/31 (13%) and 8/56 (14%), 3HP and 9H, respectively (difference, 13% - 14% = -1%; 95% confidence interval = -17% to +18%) and congenital anomalies in 0/20 and 2/41 (5%) live births, 3HP and 9H, respectively (difference, 0% - 5% = -5%; 95% confidence interval = -18% to +16%). All fetal losses occurred in pregnancies of less than 20 weeks. Of the total 126 pregnancies, fetal loss was reported in 8/54 (15%) and 9/72 (13%), 3HP and 9H, respectively; and congenital anomalies in 1/37 (3%) and 2/56 (4%) live births, 3HP and 9H, respectively. The overall proportion of fetal loss (17/126 [13%]) and anomalies (3/93 [3%]) were similar to those estimated for the United States, 17% and 3%, respectively. CONCLUSIONS:Among reported pregnancies in these two latent tuberculosis infection trials, there was no unexpected fetal loss or congenital anomalies. These data offer some preliminary reassurance to clinicians and patients in circumstances when these drugs and regimens are the best option in pregnancy or in women of child-bearing potential. This work used the identifying trial registration numbers NCT00023452 and NCT01582711, corresponding to the primary clinical trials PREVENT TB and iAdhere (Tuberculosis Trials Consortium Study 26 and 33).
Project description:Trypanosome RNA polymerase II transcription is polycistronic, individual mRNAs being excised by trans splicing and polyadenylation. In this study, we refined the previously published mathematical model for bloodstream form parasites and extended it to the procyclic form. We used the model, together with known mRNA half-lives, to predict the abundances of individual mRNAs, assuming rapid, unregulated mRNA processing; then we compared the results with measured mRNA abundances. Remarkably, the abundances of most mRNAs in procyclic forms are predicted quite well by the model, being largely explained by variations in mRNA decay rates and length. In bloodstream forms substantially more mRNAs are less abundant than predicted. We list mRNAs that are likely to show particularly slow or inefficient processing, either in both forms or with developmental regulation. We also measured ribosome occupancies of all mRNAs in trypanosomes grown in the same conditions as were used to measure mRNA turnover. In procyclic forms there was a weak positive correlation between ribosome density and mRNA half-life, suggesting cross-talk between translation and mRNA decay; ribosome density was related to the proportion of the mRNA on polysomes, indicating control of translation initiation. Ribosomal protein mRNAs in procyclics appeared to be exceptionally rapidly processed but poorly translated. Through this study, we conclude that lLevels of mRNAs in procyclic form trypanosomes are determined mainly by length and mRNA decay, with some control of precursor processing. In bloodstream forms variations in nuclear events play a larger role in transcriptome regulation, suggesting acquisition of new control mechanisms during adaptation to mammalian parasitism.
Project description:How viral infections develop can change based on the number of viruses initially entering the body. The understanding of the impacts of infection doses remains incomplete, in part due to challenging constraints, and a lack of research. Gaining more insights is crucial regarding the measles virus (MV). The higher the MV infection dose, the earlier the peak of acute viremia, but the magnitude of the peak viremia remains almost constant. Measles is highly contagious, causes immunosuppression such as lymphopenia, and contributes substantially to childhood morbidity and mortality. This work investigated mechanisms underlying the observed wild-type measles infection dose responses in cynomolgus monkeys. We fitted longitudinal data on viremia using maximum likelihood estimation, and used the Akaike Information Criterion (AIC) to evaluate relevant biological hypotheses and their respective model parameterizations. The lowest AIC indicates a linear relationship between the infection dose, the initial viral load, and the initial number of activated MV-specific T cells. Early peak viremia is associated with high initial number of activated MV-specific T cells. Thus, when MV infection dose increases, the initial viremia and associated immune cell stimulation increase, and reduce the time it takes for T cell killing to be sufficient, thereby allowing dose-independent peaks for viremia, MV-specific T cells, and lymphocyte depletion. Together, these results suggest that the development of measles depends on virus-host interactions at the start and the efficiency of viral control by cellular immunity. These relationships are additional motivations for prevention, vaccination, and early treatment for measles.