Project description:Organocatalytic atom transfer radical polymerization (O-ATRP) is recently emerging as an appealing method for the synthesis of metal-free polymer materials with well-defined microstructures and architectures. However, the development of highly effective catalysts that can be employed at a practical low loading are still a challenging task. Herein, we introduce a catalyst design logic based on heteroatom-doping of polycyclic arenes, which leads to the discovery of oxygen-doped anthanthrene (ODA) as highly effective organic photoredox catalysts for O-ATRP. In comparison with known organocatalysts, ODAs feature strong visible-light absorption together with high molar extinction coefficient (ε455nm up to 23,950 M-1 cm-1), which allow for the establishment of a controlled polymerization under sunlight at low ppm levels of catalyst loading.
Project description:The ability of lactoferrin to catalyse hydroxyl radical production was determined by measuring ethylene production from methional (2-amino-4-methylthiobutyraldehyde) or 4-methylthio-2-oxobutyrate. Lactoferrin, isolated from human milk and saturated by adding the exact equivalents of Fe3+-nitrilotriacetic acid and dialysing, give little if any catalysis of the reaction between H2O2 and either O2-. or ascorbic acid at either pH 7.4 or pH 5.0. However, in the presence of chelating agents such as EDTA or nitrilotriacetic acid that can complex with lactoferrin, hydroxyl radical production by both mechanisms was observed.
Project description:This study applied pulsed electric fields (PEFs) to accelerate the withering and drying processes during cold-brewed black tea production. PEF pretreatment was administered at 1.0, 1.5, and 2.0 kV/cm electric field strengths, combined with varying withering times from 8 to 12 hr. During the 12-hour withering process, the redness value (a*) and total color change (∆E) of PEF-treated leaves significantly increased (p < 0.05). Furthermore, the homogenous redness of tea leaves during fermentation depended on the PEF strength applied. In addition, PEF pretreatment remarkably reduced the drying time, up to a 50% reduction at a 2.0 kV/cm field strength. Additionally, the 2.0 kV/cm PEF-pretreated black tea exhibited a notable 42% increase in theaflavin (TF) content and a 54% increase in thearubigin (TR) content. Sensory evaluation scores were highest for black tea that received PEF pretreatment at 2.0 kV/cm. These findings highlight the significant potential of PEFs in enhancing the efficiency of withering and drying processes while positively impacting the physicochemical and sensory properties of cold-brewed black tea.
Project description:Most chemiluminescence (CL) reactions usually generate only one-step CL, which is rarely dependent on the highly reactive and biologically/environmentally important hydroxyl radicals ((•)OH). Here, we show that an unprecedented two-step CL can be produced by the carcinogenic tetrachloro-1,4-benzoquinone (also known as p-chloranil) and H(2)O(2), which was found to be well-correlated to and directly dependent on its two-step metal-independent production of (•)OH. We proposed that (•)OH-dependent formation of quinone-dioxetane and electronically excited carbonyl species might be responsible for this unusual two-step CL production by tetrachloro-1,4-benzoquinone/H(2)O(2). This is a unique report of a previously undefined two-step CL-producing system that is dependent on intrinsically formed (•)OH. These findings may have potential applications in detecting and quantifying (•)OH and the ubiquitous polyhalogenated aromatic carcinogens, which may have broad biological and environmental implications for future research on these types of important species.
Project description:Hydroxyl radical ((•)OH) is the most reactive, and perhaps most detrimental to health, of the reactive oxygen species. (•)OH production in lungs following inhalation of particulate matter (PM) can result from redox-active chemicals, including iron and copper, but the relative importance of these species is unknown. This work investigates (•)OH production from iron, copper, and quinones, both individually and in mixtures at atmospherically relevant concentrations. Iron, copper, and three of the four quinones (1,2-naphthoquinone, phenanthrenequinone and 1,4-naphthoquinone) produce (•)OH. Mixtures of copper or quinones with iron synergistically produce (•)OH at a rate 20-130% higher than the sum of the rates of the individual redox-active species. We developed a regression equation from 20 mixtures to predict the rate of (•)OH production from the particle composition. For typical PM compositions, iron and copper account for most (•)OH production, whereas quinones are a minor source, although they can contribute if present at very high concentrations. This work shows that Cu contributes significantly to (•)OH production in ambient PM; other work has shown that Cu appears to be the primary driver of HOOH production and dithiothreitol (DTT) loss in ambient PM extracts. Taken together, these results indicate that copper appears to be the most important individual contributor to direct oxidant production from inhaled PM.
Project description:Contact electrification between water and a solid surface is crucial for physicochemical processes at water-solid interfaces. However, the nature of the involved processes remains poorly understood, especially in the initial stage of the interface formation. Here we report that H2O2 is spontaneously produced from the hydroxyl groups on the solid surface when contact occurred. The density of hydroxyl groups affects the H2O2 yield. The participation of hydroxyl groups in H2O2 generation is confirmed by mass spectrometric detection of 18O in the product of the reaction between 4-carboxyphenylboronic acid and 18O-labeled H2O2 resulting from 18O2 plasma treatment of the surface. We propose a model for H2O2 generation based on recombination of the hydroxyl radicals produced from the surface hydroxyl groups in the water-solid contact process. Our observations show that the spontaneous generation of H2O2 is universal on the surfaces of soil and atmospheric fine particles in a humid environment.
Project description:Hydroxyl radical protein footprinting (HRPF) by fast photochemical oxidation of proteins (FPOP) is a powerful benchtop tool used to probe protein structure, interactions, and conformational changes in solution. However, the reproducibility of all HRPF techniques is limited by the ability to deliver a defined concentration of hydroxyl radicals to the protein. This ability is impacted by both the amount of radical generated and the presence of radical scavengers in solution. In order to compare HRPF data from sample to sample, a hydroxyl radical dosimeter is needed that can measure the effective concentration of radical that is delivered to the protein, after accounting for both differences in hydroxyl radical generation and nonanalyte radical consumption. Here, we test three radical dosimeters (Alexa Fluor 488, terepthalic acid, and adenine) for their ability to quantitatively measure the effective radical dose under the high radical concentration conditions of FPOP. Adenine has a quantitative relationship between UV spectrophotometric response, effective hydroxyl radical dose delivered, and peptide and protein oxidation levels over the range of radical concentrations typically encountered in FPOP. The simplicity of an adenine-based dosimeter allows for convenient and flexible incorporation into FPOP applications, and the ability to accurately measure the delivered radical dose will enable reproducible and reliable FPOP across a variety of platforms and applications.
Project description:Hydroxyl radical production, detected by ethylene formation from methional, has been investigated in plasma, lymph and synovial fluid. In the presence of added iron--EDTA, addition of either H2O2 or xanthine and xanthine oxidase gave rise to hydroxyl radical formation that in most cases was not superoxide-dependent. The ascorbate already present in the fluid appeared to participate in the reaction. In the absence of added catalyst, the reaction was hardly detectable, the rate being less than 5% of that observed with 1 microM-iron--EDTA added. This implies that the fluids had little if any capacity to catalyse hydroxyl radical production via this mechanism.
Project description:Cold-brewed jasmine tea (CB-JT) is regarded to possess characteristic flavors and health benefits as a novel resource of functional tea beverages. To investigate the molecular mechanisms underlying CB-JT-mediated protective effects on obesity, we evaluated the serum biochemistry, histological condition, glucose tolerance, gene expression profile and intestinal microbial diversity in high-fat diet (HFD)-fed mice. Our results demonstrate that cold-brewed jasmine tea can significantly attenuate HFD-induced body weight gain, abnormal serum lipid levels, fat deposition, hepatic injury, inflammatory processes as well as metabolic endotoxemia. CB-JT also modified the microbial community composition in HFD-fed mice and altered the balance to one closely resembled that of the control group. The differential abundance of core microbes in obese mice was reversed by CB-JT treatment, including an increment in the abundance of Blautia, Mucispirillum, and Bilophila as well as a decrease in the abundance of Alloprevotella. CB-JT was proved to regulate the mRNA expression levels of lipid metabolism-related genes such as Leptin, Pgc1a Il6, and Il1b in the adipose tissue coupled with Cyp7a1, Lxra, Srebp1c, and Atgl in the liver. These findings indicate that cold-brewed jasmine tea might be served as a potential functional tea beverage to prevent obesity and gut microbiota dysbiosis.
Project description:In order to distinguish between the mechanism of microsomal ethanol oxidation and hydroxyl-radical formation, the rate of cytochrome P-450 (P-450)-dependent oxidation of dimethyl sulphoxide (Me2SO) was determined in the presence and in the absence of iron-chelating compounds, in liver microsomes from control, ethanol- and phenobarbital-treated rats. Ethanol treatment resulted in a specific increase (3-fold) of the microsomal ethanol oxidation and NADPH consumption per nmol of P-450. A form of P-450 was purified to apparent homogeneity from the ethanol-treated rats and characterized with respect of amino acid composition and N-terminal amino acid sequence. Specific ethanol induction of a cytochrome P-450 species having a catalytic-centre activity of 20/min for ethanol and consuming 30 nmol of NADPH/min could account for the results observed with microsomes. Phenobarbital treatment caused 50% decrease in the rate of ethanol oxidation and NADPH oxidation per nmol of P-450. The rate of oxidation of the hydroxyl-radical scavenger Me2SO was increased 3-fold by ethanol or phenobarbital treatment when expressed on a per-mg-of-microsomal-protein basis, but the rate of Me2SO oxidation expressed on a per-nmol-of-P-450 basis was unchanged. Addition of iron-chelating agents to the three different types of microsomal preparations caused an 'uncoupling' of the electron-transport chain accompanied by a 4-fold increase of the rate of Me2SO oxidation. It is concluded that ethanol treatment results in the induction of P-450 forms specifically effective in ethanol oxidation and NADPH oxidation, but not in hydroxyl-radical production, as detected by the oxidation of Me2SO.