Project description:Half of all cancer patients receive radiotherapy, which makes a substantial contribution to their long-term disease control/cure. There are significant inter-patient differences in response, both in terms of efficacy and toxicity (frequently delayed onset) which are difficult to predict. With the introduction of technological improvements (e.g. stereotactic body radiotherapy and proton therapy) and development of combination therapies (e.g. radiotherapy and immune checkpoint inhibition), predictive biomarkers are needed even more. Whilst genomic studies have contributed significantly to predictions of response to anticancer therapy, there is no doubt that more information can be gathered from patient tissue samples. Patients are willing to donate their tissues to biobanks and wish them to be used as widely as possible for high-quality research. We report here a survey of the current practices in the UK from several groups collecting material from patients in radiotherapy trials and have identified barriers to collecting and sharing data and samples. We believe the current situation represents a significant missed opportunity to improve the personalisation of radiotherapy. We propose a greater involvement of patients and/or their advocates, a standardisation of the patient information leaflet, consent form content and data set, with easy linkage to clinical data, which would facilitate widespread sample and data discovery and availability to other researchers. The greater sharing of data and samples, nationally and internationally, would facilitate robust multicentre studies and avoid duplication of effort.
Project description:Recent advances and discoveries in the structure and role of mRNA as well as novel lipid-based delivery modalities have enabled the advancement of mRNA therapeutics into the clinical trial space. The manufacturing of these products is relatively simple and eliminates many of the challenges associated with cell culture production of viral delivery systems for gene and cell therapy applications, allowing rapid production of mRNA for personalized treatments, cancer therapies, protein replacement and gene editing. The success of mRNA vaccines during the COVID-19 pandemic highlighted the immense potential of this technology as a vaccination platform, but there are still particular challenges to establish mRNA as a widespread therapeutic tool. Immunostimulatory byproducts can pose a barrier for chronic treatments and different production scales may need to be considered for these applications. Moreover, long-term storage of mRNA products is notoriously difficult. This review provides a detailed overview of the manufacturing steps for mRNA therapeutics, including sequence design, DNA template preparation, mRNA production and formulation, while identifying the challenges remaining in the dose requirements, long-term storage and immunotolerance of the product.
Project description:The revolution in DNA sequencing technologies has now made it feasible to determine the genome sequences of many individuals; i.e., "personal genomes." Genome sequences of cells and tissues from both normal and disease states have been determined. Using current approaches, whole human genome sequences are not typically assembled and determined de novo, but, instead, variations relative to a reference sequence are identified. We discuss the current state of personal genome sequencing, the main steps involved in determining a genome sequence (i.e., identifying single-nucleotide polymorphisms [SNPs] and structural variations [SVs], assembling new sequences, and phasing haplotypes), and the challenges and performance metrics for evaluating the accuracy of the reconstruction. Finally, we consider the possible individual and societal benefits of personal genome sequences.
Project description:Long-read sequencing technologies have revolutionized genome assembly producing near-complete chromosome assemblies for numerous organisms, which are invaluable to research in many fields. However, regions with complex repetitive structure continue to represent a challenge for genome assembly algorithms, particularly in areas with high heterozygosity. Robust and comprehensive solutions for the assessment of assembly accuracy and completeness in these regions do not exist. In this study we focus on the assembly of biomedically important antibody-encoding immunoglobulin (IG) loci, which are characterized by complex duplications and repeat structures. High-quality full-length assemblies for these loci are critical for resolving haplotype-level annotations of IG genes, without which, functional and evolutionary studies of antibody immunity across vertebrates are not tractable. To address these challenges, we developed a pipeline, "CloseRead", that generates multiple assembly verification metrics for analysis and visualization. These metrics expand upon those of existing quality assessment tools and specifically target complex and highly heterozygous regions. Using CloseRead, we systematically assessed the accuracy and completeness of IG loci in publicly available assemblies of 74 vertebrate species, identifying problematic regions. We also demonstrated that inspecting assembly graphs for problematic regions can both identify the root cause of assembly errors and illuminate solutions for improving erroneous assemblies. For a subset of species, we were able to correct assembly errors through targeted reassembly. Together, our analysis demonstrated the utility of assembly assessment in improving the completeness and accuracy of IG loci across species.
Project description:Sponges have complex relationships with bacteria, the roles of which include food, important components of the holobiont, pathogens, and accidentally accumulated elements of the environment. Consequently, sponges are reservoirs of microbial genomes and novel compounds. Therefore, we isolated and sequenced the whole genomes of bacterial species from the calcareous sponge Sycon capricorn.
Project description:Biomarkers are widely used at every stage of drug discovery and development. Utilisation of biomarkers has a potential to make drug discovery, development and approval processes more efficient. An overview of the current global regulatory landscape is presented in this article with particular emphasis on the validation and qualification of biomarkers, as well as legal framework for companion diagnostics. Furthermore, this article shows how the number of approved drugs with at least 1 biomarker used during development (biomarker acceptance) is affected by the recent advances in the biomarker regulations. More than half of analysed approvals were supported by biomarker data and there has been a slight increase in acceptance of biomarkers in recent years, even though the growth is not continuous. For certain pharmacotherapeutic groups, approvals with biomarkers are more common than without. Examples include immunosuppressants, immunostimulants, drugs used in diabetes, antithrombotic drugs, antineoplastic agents and antivirals. As a conclusion, potential benefits, challenges and opportunities of using biomarkers in drug discovery and development in the current regulatory landscape are summarised and discussed.
Project description:Gastrointestinal (GI) cancer remains the deadliest cancer in the world. The current standard treatment for GI cancer focuses on 5-fluorouracil-based chemotherapeutic regimens and surgery, and molecular-targeted therapy is expected to be a more effective and less toxic therapeutic strategy for GI cancer. There is well-established evidence for the use of epidermal growth factor receptor-targeted and vascular endothelial growth factor-targeted antibodies, which should routinely be incorporated into treatment strategies for GI cancer. Other potential therapeutic targets involve the PI3K/AKT pathway, tumor growth factor-β pathway, mesenchymal-epithelial transition pathway, WNT pathway, poly (ADP-ribose) polymerase, and immune checkpoints. Many clinical trials assessing the agents of targeted therapy are underway and have presented promising and thought-provoking results. With the development of molecular biology techniques, we can identify more targetable molecular alterations in larger patient populations with GI cancer. Targeting these molecules will allow us to reach the goal of precision medicine and improve the outcomes of patients with GI cancer.
Project description:The heterotrophic stramenopile Cafeteria roenbergensis is a globally distributed marine bacterivorous protist. This unicellular flagellate is host to the giant DNA virus CroV and the virophage mavirus. We sequenced the genomes of four cultured C. roenbergensis strains and generated 23.53 Gb of Illumina MiSeq data (99-282 × coverage per strain) and 5.09 Gb of PacBio RSII data (13-45 × coverage). Using the Canu assembler and customized curation procedures, we obtained high-quality draft genome assemblies with a total length of 34-36 Mbp per strain and contig N50 lengths of 148 kbp to 464 kbp. The C. roenbergensis genome has a GC content of ~70%, a repeat content of ~28%, and is predicted to contain approximately 7857-8483 protein-coding genes based on a combination of de novo, homology-based and transcriptome-supported annotation. These first high-quality genome assemblies of a bicosoecid fill an important gap in sequenced stramenopile representatives and enable a more detailed evolutionary analysis of heterotrophic protists.
Project description:BackgroundHealth Technology Assessment (HTA) has been widely recognized as informing healthcare decision-making, and interest in HTA of medical devices has been steadily increasing. How does the assessment of medical devices differ from that of drug therapies, and what innovations can be adopted to overcome the inherent challenges in medical device HTA?MethodHTA Accelerator Database was used to describe the landscape of HTA reports for medical devices from HTA bodies, and a literature search was conducted to understand the growth trend of relevant HTA publications in four case studies. Another literature review was conducted for a narrative synthesis of the characteristic differences and challenges of HTA in medical devices. We further conducted a focused Internet search of guidelines and a narrative review of methodologies specific to the HTA of medical devices.Main bodyThe evidence of HTA reports and journal publications on medical devices around the world has been growing. The challenges in assessing medical devices include scarcity of well-designed randomized controlled trials, inconsistent real-world evidence data sources and methods, device-user interaction, short product lifecycles, inexplicit target population, and a lack of direct medical outcomes. Practical solutions in terms of methodological advancement of HTA for medical devices were also discussed in some HTA guidelines and literature.ConclusionTo better conduct HTA on medical devices, we recommend considering multi-source evidence such as real-world evidence; standardizing HTA processes, methodologies, and criteria; and integrating HTA into decision-making.