Project description:The effect of renal denervation (RD) for resistant hypertension remains controversial because of the conflicting results of finished and ongoing studies. The authors performed a meta-analysis of case-control studies to identify whether renal sympathetic denervation or pharmacotherapy (PHAR) was more effective for resistant hypertension. A systematic Internet database search of relevant papers written in English was performed. A total of nine studies met the inclusion criteria, with a total of 1096 patients. When comparing the RD group with the PHAR group, there was a significant decrease in systolic blood pressure (SBP) (weighted mean difference, -12.81 mm Hg; 95% confidence interval [CI], -22.77 mm Hg to -2.85 mm Hg; P=.01) and diastolic blood pressure (DBP) (weighted mean difference, -5.56; 95% CI, -8.15 mm Hg to -2.97 mm Hg; P<.0001). This pooled analysis shows that for patients with resistant hypertension, RD is more effective in reducing SBP and DBP than PHAR. RD may be more effective in special subgroups of patients, which needs to be identified in future investigations.
Project description:Renal denervation (RDN) is a catheter-based ablation procedure designed to treat resistant hypertension (RH). The objective of our study is to determine the effect of RDN on blood pressure and renal function in patients with RH in comparison to medical therapy alone. We performed an extensive literature search for randomized control trials (RCT) reporting office and 24 hr. blood pressure changes and estimated glomerular filtration rate (eGFR) at baseline and 6 months. We calculated a weighted standardized mean difference of blood pressure and renal outcomes between RDN and control groups using random effects models. Our search yielded 608 studies of which we included 15 studies for the final analysis. A total of 857 patients were treated with RDN and 616 patients treated with medical therapy ± sham procedure. Only 5 studies were double-blinded RCT with sham control. The adjusted standardized mean difference in the change in office based systolic and diastolic pressures (p = 0.18; p = 0.14); 24 hr. systolic and diastolic pressures (p = 0.20; p = 0.18); and eGFR (p = 0.20) from baseline to 6 months is statistically insignificant with significant heterogeneity. Subgroup analysis showed that among sham controlled trials, 24 hr. systolic blood pressure showed a modest but statistically significant benefit favoring renal denervation in patients with RH. Our meta-analysis of 15 RCTs showed no significant benefit of RDN on blood pressure control in patients with resistant hypertension. Subgroup analysis of sham control studies showed a modest benefit in 24 hr. systolic blood pressure at 6 months with RDN.
Project description:ObjectiveThe objective of this study is to evaluate the efficacy and safety of renal denervation in patients with resistant hypertension.MethodsWe searched MEDLINE and EMBASE for studies that evaluated the use of catheter-based renal sympathetic denervation compared to a control group and reported blood pressure results at follow-up. Data was extracted from relevant studies and pooled estimates for blood pressure were determined using the inverse variance method for meta-analysis with mean difference.ResultsWe identified 12 studies (three randomised controlled trials (n=688), eight prospective observational studies (n=478) and one observational study with matched controls (n=310)). Data from SYMPLICITY HTN-3, the only high-quality blinded randomised control trial suggests that there is no significant difference in change in systolic (-2.30 95% CI -6.90 to 2.30 mm Hg) or diastolic (-1.96 95% CI -4.98 to 1.06 mm Hg) blood pressure at 6 months. The pooled data from two unblinded trials of lower quality showed significant reduction in change in systolic (-27.36 95% CI -37.08 to -24.61 mm Hg) and diastolic blood pressure (-9.62 95% CI -14.51 to -4.72 mm Hg). In terms of safety, SYMPLICITY HTN-3 found no significant differences between treatment and control group in terms of death, myocardial infarction, new onset renal disease, stroke and hypertensive emergencies.ConclusionsIn conclusion, while poor quality unblinded studies provide evidence that renal denervation using catheter-based systems is effective in reducing systolic and diastolic blood pressure in resistant hypertension, the largest randomised controlled trial to date (SYMPLICITY HTN-3) failed to demonstrate any benefit.
Project description:Arterial hypertension is the most prevalent risk factor associated with increased cardiovascular morbidity and mortality. Although pharmacological treatment is generally well tolerated, 5%-20% of patients with hypertension are resistant to medical therapy, which is defined as blood pressure above goal (>140/90 mmHg in general; >130-139/80-85 mmHg in patients with diabetes mellitus; >130/80 mmHg in patients with chronic kidney disease) despite treatment with ?3 antihypertensive drugs of different classes, including a diuretic, at optimal doses. These patients are at significantly higher risk for cardiovascular events, in particular stroke, myocardial infarction, and heart failure, as compared with patients with nonresistant hypertension. The etiology of resistant hypertension is multifactorial and a number of risk factors have been identified. In addition, resistant hypertension might be due to secondary causes such as primary aldosteronism, chronic kidney disease, renal artery stenosis, or obstructive sleep apnea. To identify patients with resistant hypertension, the following must be excluded: pseudo-resistance, which might be due to nonadherence to medical treatment; white-coat effect; and inaccurate measurement technique. Activation of the sympathetic nervous system contributes to the development and maintenance of hypertension by increasing renal renin release, decreasing renal blood flow, and enhancing tubular sodium retention. Catheter-based renal denervation (RDN) is a novel technique specifically targeting renal sympathetic nerves. Clinical trials have demonstrated that RDN significantly reduces blood pressure in patients with resistant hypertension. Experimental studies and small clinical studies indicate that RDN might also have beneficial effects in other diseases and comorbidities, characterized by increased sympathetic activity, such as left ventricular hypertrophy, heart failure, metabolic syndrome and hyperinsulinemia, atrial fibrillation, obstructive sleep apnea, and chronic kidney disease. Further controlled studies are required to investigate the role of RDN beyond blood pressure control.
Project description:Comparative efficacy and safety of renal denervation (RDN) interventions for uncontrolled (UH) and resistant hypertension (RH) is unknown. We assessed the comparative efficacy and safety of existing RDN interventions for UH and RH. Six search engines were searched up to 1 May 2020. Primary outcomes were mean 24-h ambulatory and office systolic blood pressure (SBP). Secondary outcomes were mean 24-h ambulatory and office diastolic blood pressure (DBP), clinical outcomes, and serious adverse events. Frequentist random-effects network meta-analyses were used to evaluate effects of RDN interventions. Twenty randomized controlled trials (RCTs) (n = 2152) were included, 15 in RH (n = 1544) and five in UH (n = 608). Intervention arms included radiofrequency (RF) in main renal artery (MRA) (n = 10), RF in MRA and branches (n = 4), RF in MRA+ antihypertensive therapy (AHT) (n = 5), ultrasound (US) in MRA (n = 3), sham (n = 8), and AHT (n = 9). RF in MRA and branches ranked as the best treatment to reduce 24-h ambulatory, daytime, and nighttime SBP and DBP versus other interventions (p-scores: 0.83 to 0.97); significant blood pressure effects were found versus sham or AHT. RF in MRA+AHT was the best treatment to reduce office SBP and DBP (p-scores: 0.84 and 0.90, respectively). RF in MRA and branches was the most efficacious versus other interventions to reduce 24-h ambulatory SBP and DBP in UH or RH.
Project description:The objective of this study is to systematically evaluate the efficacy of renal denervation (RD), adjusted drugs, or combined therapy for resistant hypertension (RH) through a systematic review and meta-analysis of controlled studies.Publications were comprehensively searched. Studies that investigated the effects of RD and/or adjusted drugs in lowering blood pressure (BP) were included. After quality assessment and data extraction, subgroup analyzes were first performed according to blinding method. Meta-regression and inverted funnel plots were also conducted.A total of 13 studies containing 1604 RH patients were included. Compared with control, the meta-analysis showed that RD significantly reduced office-based BP and ambulatory BP in 6 months in the unblinded studies, while no significant difference was found in the blinded studies. Meta-regression demonstrated the significant influence of blinding method on BP reduction, and further analysis revealed a significant BP reduction compared with baseline even in the control arm of blinded studies. RD had similar effects compared with adjusted drugs, and combined therapy seemed to further reduce the level of BP.The efficacy of RD was different between blinded and unblinded studies, and our data revealed a significant BP-lowering effect in the control arm of blinded studies, which was helpful to explain this finding. Furthermore, RD seemed to be equivalent to adjusted drugs, and also we suggested a potential advantage of combined therapy of RD and adjusted drugs compared with monotherapy for RH. However, more studies are warranted to better address the issue.
Project description:BackgroundCatheter-based renal denervation (RDN) is a novel treatment for resistant hypertension (RH). A recent meta-analysis reported that RDN did not significantly reduce blood pressure (BP) based on the pooled effects with mild to severe heterogeneity. The aim of the present study was to identify and reduce clinical sources of heterogeneity and reassess the safety and efficacy of RDN within the identified homogeneous subpopulations.MethodsThis was a meta-analysis of 9 randomized clinical trials (RCTs) among patients with RH up to June 2016. Sensitivity analyses and subgroup analyses were extensively conducted by baseline systolic blood pressure (SBP) level, antihypertensive medication change rates, and coronary heart disease (CHD).ResultsIn all patients with RH, no statistical differences were found in mortality, severe cardiovascular events rate, and changes in 24-h SBP and office SBP at 6 and 12 months. However, subgroup analyses showed significant differences between the RDN and control groups. In the subpopulations with baseline 24-h SBP ≥155 mmHg (1 mmHg = 0.133 kPa) and the infrequently changed medication, the use of RDN resulted in a significant reduction in 24-h SBP level at 6 months (P = 0.100 and P= 0.009, respectively). Subgrouping RCTs with a higher prevalent CHD in control showed that the control treatment was significantly better than RDN in office SBP reduction at 6 months (P < 0.001).ConclusionsIn all patients with RH, the catheter-based RDN is not more effective in lowering ambulatory or office BP than an optimized antihypertensive drug treatment at 6 and 12 months. However, among RH patients with higher baseline SBP, RDN might be more effective in reducing SBP.
Project description:Arterial hypertension (HTN) is a major health problem worldwide. Treatment-resistant hypertension (trHTN) is defined as the failure to achieve target blood pressure despite the concomitant use of maximally tolerated doses of three different antihypertensive medications, including a diuretic. trHTN is associated with considerable morbidity and mortality. Renal sympathetic denervation (RDn) is available and implemented abroad as a strategy for the treatment of trHTN and is currently under clinical investigation in the United States. Selective renal sympathectomy via an endovascular approach effectively decreases renal sympathetic nerve hyperactivity leading to a decrease in blood pressure. The Symplicity catheter, currently under investigation in the United States, is a 6-French compatible system advanced under fluoroscopic guidance via percutaneous access of the common femoral artery to the distal lumen of each of the main renal arteries. Radiofrequency (RF) energy is then applied to the endoluminal surface of the renal arteries via an electrode located at the tip of the catheter. Two clinical trials (Symplicity HTN 1 and Symplicity HTN 2) have shown the efficacy of RDn with a post-procedure decline of 27/17 mmHg at 12 months and 32/12 mmHg at 6 months, respectively, with few minor adverse events. Symplicity HTN-3 study is a, multi-center, prospective, single-blind, randomized, controlled study currently under way and will provide further insights about the safety and efficacy of renal denervation in patients with trHTN.