Project description:Over the past three decades, environmental concerns about the water pollution have been raised on societal and industrial levels. The presence of pollutants stemming from cosmetic products has been documented in wastewater streams outflowing from industrial as well as wastewater treatment plants. To this end, a series of consistent measures should be taken to prevent emerging contaminants of water resources. This need has driven the development of technologies, in an attempt to mitigate their impact on the environment. This work offers a thorough review of existing knowledge on cosmetic wastewater treatment approaches, including, coagulation, dissolved air flotation, adsorption, activated sludge, biodegradation, constructed wetlands, and advanced oxidation processes. Various studies have already documented the appearance of cosmetics in samples retrieved from wastewater treatment plants (WWTPs), which have definitely promoted our comprehension of the path of cosmetics within the treatment cycle; however, there are still multiple blanks to our knowledge. All treatments have, without exception, their own limitations, not only cost-wise, but also in terms of being feasible, effective, practical, reliable, and environmentally friendly.
Project description:Phosphorus (P) as an essential nutrient for life sustains the productivity of food systems; yet misdirected P often accumulates in wastewater and triggers water eutrophication if not properly treated. Although technologies have been developed to remove P, little attention has been paid to the recovery of P from wastewater. This work provides a comprehensive review of the state-of-the-art P removal technologies in the science of wastewater treatment. Our analyses focus on the mechanisms, removal efficiencies, and recovery potential of four typical water and wastewater treatment processes including precipitation, biological treatment, membrane separation, and adsorption. The design principles, feasibility, operation parameters, and pros & cons of these technologies are analyzed and compared. Perspectives and future research of P removal and recovery are also proposed in the context of paradigm shift to sustainable water treatment technology.
Project description:Water treatment sludge, which is mechanically dewatered and landfilled as solid waste, is considerably generated in water plants for potable water production. Herein, a novel route to hydrothermally convert this sludge into magnetic particles (MPs) is demonstrated. The sludge comprised amorphous aggregates with a relatively high Al/Si ratio of 3.7 and low Fe content of 8.5 wt%. After hydrothermal treatment, the Al/Si ratio of the MPs was approximated to 1, which was unaffected as the NaOH concentration increased from 2 M to 4 M or 6 M. The amorphous sludge was converted to MPs in the following order: spherical sodalite with a diameter of 3-5 μm, large spherical sodalite with a diameter of 5-10 μm and crystal dendritic cancrinite. Dendritic cancrinite was generated by recrystallisation of amorphous Al/Si oxides with spherical sodalite as the intermediate. With the addition of ascorbic acid, magnetisation of the weakly magnetised sludge increased from 0.11 emu g-1 to 3.6 emu g-1 and 14.8 emu/g by raising the NaOH concentration from 2 M to 4 M and 6 M. The magnetic property was related to the magnetite generated from the reduction of ferrihydrite and hematite in the sludge by the added ascorbic acid. Dendritic cancrinite exhibited an optimal surface site concentration of 0.31 mmol g-1 and desirable adsorption capacity of tetracycline (TC) (482.6 mg g-1), which were twice those of spherical sodalite prepared with 4 M NaOH. This study not only highlights the resource recovery of wastewater treatment sludge for MP preparation but also presents a new and effective adsorbent for treatment of TC-containing wastewater.
Project description:Global expectations for wastewater service infrastructure have evolved over time, and the standard treatment methods used by wastewater treatment plants (WWTPs) are facing issues related to problem shifting due to the current emphasis on sustainability. A transition in WWTPs toward reuse of wastewater-derived resources is recognized as a promising solution for overcoming these obstacles. However, it remains uncertain whether this approach can reduce the environmental footprint of WWTPs. To test this hypothesis, we conducted a net environmental benefit calculation for several scenarios for more than 50 individual countries over a 20-y time frame. For developed countries, the resource recovery approach resulted in ∼154% net increase in the environmental performance of WWTPs compared with the traditional substance elimination approach, whereas this value decreased to ∼60% for developing countries. Subsequently, we conducted a probabilistic analysis integrating these estimates with national values and determined that, if this transition was attempted for WWTPs in developed countries, it would have a ∼65% probability of attaining net environmental benefits. However, this estimate decreased greatly to ∼10% for developing countries, implying a substantial risk of failure. These results suggest that implementation of this transition for WWTPs should be studied carefully in different temporal and spatial contexts. Developing countries should customize their approach to realizing more sustainable WWTPs, rather than attempting to simply replicate the successful models of developed countries. Results derived from the model forecasting highlight the role of bioenergy generation and reduced use of chemicals in improving the sustainability of WWTPs in developing countries.
Project description:To enable a more sustainable wastewater treatment processes, a transition towards resource recovery methods that have minimal environmental impact while being financially viable is imperative. Phosphorus (P) is a finite resource that is being discharged into the aqueous environment in excessive quantities. As such, understanding the financial and environmental effectiveness of different approaches for removing and recovering P from wastewater streams is important to reduce the overall impact of wastewater treatment. In this study, a process-systems modelling framework for comprehensively evaluating these approaches in terms of both economic and environmental impacts is developed. Applying this framework, treatment pathways are designed, simulated and analysed to determine the most suitable approaches for P removal and recovery. The purpose of this methodology is not only to assist with plant design, but also to identify the principal economic and environmental factors acting as barriers to implementing a given technology, incorporating the impact of waste recovery. The results suggest that the chemical and ion-exchange approaches studied deliver sustainable advantages over biological pathways, both economically and environmentally, with each possessing different strengths. The assessment methodology developed enables a more rational and environmentally sound wastewater plant design approach to be taken.
Project description:Membrane technologies have broad potential in methods for separating, collecting, storing, and utilizing urine collected from toilets. Recovering urine from toilets for resource utilization instead of treating it in a sewage treatment plant not only reduces extra energy consumption for the degradation of N and P but also saves energy in chemical fertilizer production, which will contribute to carbon emission reduction of 12.19-17.82 kg kgN -1 in terms of N alone. Due to its high efficiency in terms of volume reduction, water recycling, nutrient recovery, and pollutant removal, membrane technology is a promising technology for resource utilization from urine collected from toilets. In this review, we divide membrane technologies for resource utilization from urine collected from toilets into four categories based on the driving force: external pressure-driven membrane technology, vapor pressure-driven membrane technology, chemical potential-driven membrane technology, and electric field-driven membrane technology. These technologies influence factors such as: recovery targets and mechanisms, reaction condition optimization, and process efficiency, and these are all discussed in this review. Finally, a toilet with source-separation is suggested. In the future, membrane technology research should focus on the practical application of source-separation toilets, membrane fouling prevention, and energy consumption evaluation. This review may provide theoretical support for the resource utilization of urine collected from toilets that is based on membrane technology.
Project description:In recent years, artificial intelligence (AI) techniques have been recognized as powerful techniques. In this work, AI techniques such as artificial neural networks (ANNs), support vector machines (SVM), adaptive neuro-fuzzy inference system (ANFIS), genetic algorithms (GA), and particle swarm optimization (PSO), used in water and wastewater treatment processes, are reviewed. This paper describes applications of the mentioned AI techniques for the modelling and optimization of electrochemical processes for water and wastewater treatment processes. Most research in the mentioned scope of study consists of electrooxidation, electrocoagulation, electro-Fenton, and electrodialysis. Also, ANNs have been the most frequent technique used for modelling and optimization of these processes. It was shown that most of the AI models have been built with a relatively low number of samples (< 150) in data sets. This points out the importance of reliability and robustness of the AI models derived from these techniques. We show how to improve the performance and reduce the uncertainty of these developed black-box data-driven models. From the perspectives of both experiment and theory, this review demonstrates how AI techniques can be effectively adapted to electrochemical processes for water and wastewater treatment to model and optimize these processes.Supplementary informationThe online version contains supplementary material available at 10.1007/s40201-022-00835-w.
Project description:Given the significance of dissolved H2S, various techniques have been explored in the literature. The current review describes in detail the various membrane-based techniques, such as membrane contactors, for removing dissolved H2S from various wastewater streams. Various types of hydrophobic membranes have been used, with more emphasis placed on PVDF hollow fiber membranes. The hydrophobic membranes do not allow water to pass through, whereas H2S is readily allowed to pass through the membrane at ambient conditions. In addition, the use of monoethanol amine triazine (MEA-Triazine)- based H2S scavengers has also been described in detail, including the possible scavenging mechanism. The possibility of different types of byproducts has also been explained along with the possible routes to get rid of scavenger byproducts, such as apDTZ. The use of peroxy acetic acid has also been explained to oxidize and solubilize apDTZ. Furthermore, the use of vacuum-based dissolved H2S gas has also been described in detail. The application of the Knudsen and bulk diffusion models to the separation of dissolved H2S through the pores of the hollow fibers has also been explained. Finally, the future challenges and possible solutions along with concluding remarks have also been mentioned in the current review.
Project description:This comprehensive study addressed the occurrence, seasonal changes, removal efficiencies, and environmental risk assessments of three macrolide antibiotics in five wastewater treatment plants (WWTPs) with conventional and different additional treatment processes. A 1-year monitoring study was conducted, and influents and effluents were collected from Guangzhou (GZ), Shenzhen (SZ), Tai Po (TP), Shatin (ST), and Stonecutters Island (SI) WWTPs. Solid phase extraction and HPLC-MS/MS were used for the pretreatment and determination. The detection limits for azithromycin (AZI), erythromycin (ERY), and roxithromycin (ROX) ranged from 0.80 to 2.13 ng/L for the influent and effluent water samples. AZI was the most abundant antibiotic found in the influents, with average concentrations ranging from 571 ng/L to 1046 ng/L at all the target WWTPs. The seasonal average AZI concentration was the highest in all five WWTPs with the concentration of 984 ng/L in autumn, 849 ng/L in winter, 741 ng/L in summer, and 533 ng/L in spring. The seasonal AZI removal rates in the WWTPs were similar, with an average removal rate above 63.3% from spring to winter. All the treatments in the five WWTPs showed removal abilities for AZI, ERY, and ROX, regardless of the three phase treatments, namely, the UV disinfection process and conventional or chemically enhanced process within the WWTPs. For ERY and ROX, the average total removal rates were significantly decreased in the spring among all five WWTPs, at 53.1% and 57.8%, respectively. The GZ and SZ WWTPs displayed better removal rates than the TP, ST, and SI WWTPs, because the activity underlying the modified A2/O process in the GZ and SZ WWTPs has important effects on the antibiotic removal because the bacteria could produce compact granules and make the antibiotics settle faster in the wastewater. The additional UV disinfection in the SZ WWTP improved the removal efficiencies of the target antibiotics; it enhanced the biodegradability of residual organic pollutants in the WWTP effluent. Moreover, the corresponding environmental risks have been assessed and are viewed as a necessary component of future research.Supplementary informationThe online version contains supplementary material available at 10.1007/s11270-021-05053-y.
Project description:This research assesses the impact of wastewater sludges from different treatment stages and facility scales on the biocrude power potential from hydrothermal liquefaction (HTL). HTL offers a promising method for energy resource recovery through biocrude production, yet its viability for smaller facilities [<1 million gallons per day (MGD)] remains uncertain. Sludges from facilities of varying scales (0.8, 13, and 76 MGD) were analyzed. We found that the treatment stage influences the energy content and chemical composition more than the facility scale. HTL experiments showed that primary sludges (PS) yield more biocrude than waste-activated sludges (WAS); however, the carbon fractionation remained similar across facility scales. The power generated by PS converted to biocrude was 1.05-1.55 times higher than that if it were converted to methane. Meanwhile, WAS resulted in lower power generation from biocrude than methane. At small plants where primary treatment is not incorporated, HTL is not an ideal energy recovery technology, and instead other waste-management solutions might be better explored. This study emphasizes applying HTL only at plants where it can be truly viable for matching or exceeding the power consumption by evaluating HTL in the context of practical wastewater treatment parameters, e.g., treatment flow, sludge density, energy density, and the realistic conversion potential for energy resource recovery technologies.