Ontology highlight
ABSTRACT: Background
Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group.Methods
We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality.Results
We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for d-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance.Conclusion
These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.
SUBMITTER: Zhu X
PROVIDER: S-EPMC10842116 | biostudies-literature | 2023 Dec
REPOSITORIES: biostudies-literature

Zhu Xi X Kim Yoojean Y Ravid Orren O He Xiaofu X Suarez-Jimenez Benjamin B Zilcha-Mano Sigal S Lazarov Amit A Lee Seonjoo S Abdallah Chadi G CG Angstadt Michael M Averill Christopher L CL Baird C Lexi CL Baugh Lee A LA Blackford Jennifer U JU Bomyea Jessica J Bruce Steven E SE Bryant Richard A RA Cao Zhihong Z Choi Kyle K Cisler Josh J Cotton Andrew S AS Daniels Judith K JK Davenport Nicholas D ND Davidson Richard J RJ DeBellis Michael D MD Dennis Emily L EL Densmore Maria M deRoon-Cassini Terri T Disner Seth G SG Hage Wissam El WE Etkin Amit A Fani Negar N Fercho Kelene A KA Fitzgerald Jacklynn J Forster Gina L GL Frijling Jessie L JL Geuze Elbert E Gonenc Atilla A Gordon Evan M EM Gruber Staci S Grupe Daniel W DW Guenette Jeffrey P JP Haswell Courtney C CC Herringa Ryan J RJ Herzog Julia J Hofmann David Bernd DB Hosseini Bobak B Hudson Anna R AR Huggins Ashley A AA Ipser Jonathan C JC Jahanshad Neda N Jia-Richards Meilin M Jovanovic Tanja T Kaufman Milissa L ML Kennis Mitzy M King Anthony A Kinzel Philipp P Koch Saskia B J SBJ Koerte Inga K IK Koopowitz Sheri M SM Korgaonkar Mayuresh S MS Krystal John H JH Lanius Ruth R Larson Christine L CL Lebois Lauren A M LAM Li Gen G Liberzon Israel I Lu Guang Ming GM Luo Yifeng Y Magnotta Vincent A VA Manthey Antje A Maron-Katz Adi A May Geoffery G McLaughlin Katie K Mueller Sven C SC Nawijn Laura L Nelson Steven M SM Neufeld Richard W J RWJ Nitschke Jack B JB O'Leary Erin M EM Olatunji Bunmi O BO Olff Miranda M Peverill Matthew M Phan K Luan KL Qi Rongfeng R Quidé Yann Y Rektor Ivan I Ressler Kerry K Riha Pavel P Ross Marisa M Rosso Isabelle M IM Salminen Lauren E LE Sambrook Kelly K Schmahl Christian C Shenton Martha E ME Sheridan Margaret M Shih Chiahao C Sicorello Maurizio M Sierk Anika A Simmons Alan N AN Simons Raluca M RM Simons Jeffrey S JS Sponheim Scott R SR Stein Murray B MB Stein Dan J DJ Stevens Jennifer S JS Straube Thomas T Sun Delin D Théberge Jean J Thompson Paul M PM Thomopoulos Sophia I SI van der Wee Nic J A NJA van der Werff Steven J A SJA van Erp Theo G M TGM van Rooij Sanne J H SJH van Zuiden Mirjam M Varkevisser Tim T Veltman Dick J DJ Vermeiren Robert R J M RRJM Walter Henrik H Wang Li L Wang Xin X Weis Carissa C Winternitz Sherry S Xie Hong H Zhu Ye Y Wall Melanie M Neria Yuval Y Morey Rajendra A RA
NeuroImage 20231018
<h4>Background</h4>Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous b ...[more]