Project description:Trace amines such as p-tyramine and beta-phenylethylamine are found endogenously as well as in the diet. Concomitant ingestion of these foodstuffs with monoamine oxidase inhibitors may result in the hypertensive crisis known as the "beer, wine, and cheese effect" attributed to their sympathomimetic action. Trace amines have been shown to act on one of a novel group of mammalian seven transmembrane spanning G protein-coupled receptors belonging to the rhodopsin superfamily, cloned in 2001. This receptor encoded by the human TAAR1 gene is also present in rat and mouse genomes (Taar1) and has been shown to be activated by endogenous trace amine ligands, including p-tyramine and beta-phenylethylamine. A number of drugs, most notably amphetamine and its derivatives, act as agonists at this receptor. This review proposes an official nomenclature designating TAAR1 as the trace amine 1 receptor following the convention of naming receptors after the endogenous agonist, abbreviated to TA(1) where necessary. It goes on to discuss briefly the significance of the receptor, agents acting upon it, its distribution, and currently hypothesized physiological and pathophysiological roles. In humans, a further five genes are thought to encode functional receptors (TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9). TAAR3 seems to be a pseudogene in some individuals but not others. TAAR4 is a pseudogene in humans, but occurs with TAAR3 as a functional gene in rodents. Nine further genes are present in rats and mice. The endogenous ligands are not firmly established but some may respond to odorants consistent with their expression in olfactory epithelium.
Project description:Trace amine-associated receptors (TAARs) were discovered in 2001 as new members of class A G protein-coupled receptors (GPCRs). With the only exception of TAAR1, TAAR members (TAAR2-9, also known as noncanonical olfactory receptors) were originally described exclusively in the olfactory epithelium and believed to mediate the innate perception of volatile amines. However, most noncanonical olfactory receptors are still orphan receptors. Given its recently discovered nonolfactory expression and therapeutic potential, TAAR5 has been the focus of deorphanization campaigns that led to the discovery of a few druglike antagonists. Here, we report four novel TAAR5 antagonists identified through high-throughput screening, which, along with the four ligands published in the literature, constituted our starting point to design a computational strategy for the identification of TAAR5 ligands. We developed a structure-based virtual screening protocol that allowed us to identify three new TAAR5 antagonists with a hit rate of 10%. Despite lacking an experimental structure, we accurately modeled the TAAR5 binding site by integrating comparative sequence- and structure-based analyses of serotonin receptors with homology modeling and side-chain optimization. In summary, we have identified seven new TAAR5 antagonists that could serve as lead candidates for the development of new treatments for depression, anxiety, and neurodegenerative diseases.
Project description:The human trace amine-associated receptor 1 (hTAAR1, hTA1) is a key regulator of monoaminergic neurotransmission and the actions of psychostimulants. Despite preclinical research demonstrating its tractability as a drug target, its molecular mechanisms of activation remain unclear. Moreover, poorly understood pharmacological differences between rodent and human TA1 complicate the translation of findings from preclinical disease models into novel pharmacotherapies. To elucidate hTA1's mechanisms on the molecular scale and investigate the underpinnings of its divergent pharmacology from rodent orthologs, we herein report the structure of the human TA1 receptor in complex with a Gαs heterotrimer. Our structure reveals shared structural elements with other TAARs, as well as with its closest monoaminergic orthologue, the serotonin receptor 5-HT4R. We further find that a single mutation dramatically shifts the selectivity of hTA1 towards that of its rodent orthologues, and report on the effects of substituting residues to those found in serotonin and dopamine receptors. Strikingly, we also discover that the atypical antipsychotic medication and pan-monoaminergic antagonist asenapine potently and efficaciously activates hTA1. Together our studies provide detailed insight into hTA1 structure and function, contrast its molecular pharmacology with that of related receptors, and uncover off-target activities of monoaminergic drugs at hTA1.
Project description:The human trace amine-associated receptor 1 (hTAAR1, hTA1) is a key regulator of monoaminergic neurotransmission and the actions of psychostimulants. Despite preclinical research demonstrating its tractability as a drug target, its molecular mechanisms of activation remain unclear. Moreover, poorly understood pharmacological differences between rodent and human TA1 complicate the translation of findings from preclinical disease models into novel pharmacotherapies. To elucidate hTA1's mechanisms on the molecular scale and investigate the underpinnings of its divergent pharmacology from rodent orthologs, we herein report the structure of the human TA1 receptor in complex with a Gαs heterotrimer. Our structure reveals shared structural elements with other TAARs, as well as with its closest monoaminergic ortholog, the serotonin receptor 5-HT4R. We further find that a single mutation dramatically shifts the selectivity of hTA1 towards that of its rodent orthologs, and report on the effects of substituting residues to those found in serotonin and dopamine receptors. Strikingly, we also discover that the atypical antipsychotic medication and pan-monoaminergic antagonist asenapine potently and efficaciously activates hTA1. Together our studies provide detailed insight into hTA1 structure and function, contrast its molecular pharmacology with that of related receptors, and uncover off-target activities of monoaminergic drugs at hTA1.
Project description:Artificial intelligence is revolutionizing protein structure prediction, providing unprecedented opportunities for drug design. To assess the potential impact on ligand discovery, we compared virtual screens using protein structures generated by the AlphaFold machine learning method and traditional homology modeling. More than 16 million compounds were docked to models of the trace amine-associated receptor 1 (TAAR1), a G protein-coupled receptor of unknown structure and target for treating neuropsychiatric disorders. Sets of 30 and 32 highly ranked compounds from the AlphaFold and homology model screens, respectively, were experimentally evaluated. Of these, 25 were TAAR1 agonists with potencies ranging from 12 to 0.03 μM. The AlphaFold screen yielded a more than twofold higher hit rate (60%) than the homology model and discovered the most potent agonists. A TAAR1 agonist with a promising selectivity profile and drug-like properties showed physiological and antipsychotic-like effects in wild-type but not in TAAR1 knockout mice. These results demonstrate that AlphaFold structures can accelerate drug discovery.
Project description:There are two main families of G protein-coupled receptors that detect odours in humans, the odorant receptors (ORs) and the trace amine-associated receptors (TAARs). Their amino acid sequences are distinct, with the TAARs being most similar to the aminergic receptors such as those activated by adrenaline, serotonin, dopamine and histamine. To elucidate the structural determinants of ligand recognition by TAARs, we have determined the cryo-EM structure of a murine receptor, mTAAR7f, coupled to the heterotrimeric G protein Gs and bound to the odorant N,N-dimethylcyclohexylamine (DMCHA) to an overall resolution of 2.9 Å. DMCHA is bound in a hydrophobic orthosteric binding site primarily through van der Waals interactions and a strong charge-charge interaction between the tertiary amine of the ligand and an aspartic acid residue. This site is distinct and non-overlapping with the binding site for the odorant propionate in the odorant receptor OR51E2. The structure, in combination with mutagenesis data and molecular dynamics simulations suggests that the activation of the receptor follows a similar pathway to that of the β-adrenoceptors, with the significant difference that DMCHA interacts directly with one of the main activation microswitch residues, Trp6.48.
Project description:BackgroundMethamphetamine (MA) is a potent agonist at the trace amine-associated receptor 1 (TAAR1). This study evaluated a common variant (CV) in the human TAAR1 gene, synonymous single nucleotide polymorphism (SNP) V288V, to determine the involvement of TAAR1 in MA dependence.MethodsParticipants (n = 106) with active MA dependence (MA-ACT), in remission from MA dependence (MA-REM), with active polysubstance dependence, in remission from polysubstance dependence, and with no history of substance dependence completed neuropsychiatric symptom questionnaires and provided blood samples. In vitro expression and function of CV and wild type TAAR1 receptors were also measured.ResultsThe V288V polymorphism demonstrated a 40% increase in TAAR1 protein expression in cell culture, but message sequence and protein function were unchanged, suggesting an increase in translation efficiency. Principal components analysis resolved neuropsychiatric symptoms into four components, PC1 (depression, anxiety, memory, and fatigue), PC2 (pain), PC3 (drug and alcohol craving), and PC4 (sleep disturbances). Analyses of study group and TAAR1 genotype revealed a significant interaction for PC3 (craving response) (p = 0.003). The control group showed no difference in PC3 associated with TAAR1, while adjusted mean craving for the MA-ACT and MA-REM groups, among those with at least one copy of V288V, was estimated to be, respectively, 1.55 (p = 0.036) and 1.77 (p = 0.071) times the adjusted mean craving for those without the TAAR1 SNP.ConclusionsNeuroadaptation to chronic MA use may be altered by TAAR1 genotype and result in increased dopamine signaling and craving in individuals with the V288V genotype.
Project description:Trace amine-associated receptor 5 (TAAR5) is a G protein-coupled receptor that belongs to the TAARs family (TAAR1-TAAR9). TAAR5 is expressed in the olfactory epithelium and is responsible for sensing 3-methylamine (TMA). However, recent studies showed that TAAR5 is also expressed in the limbic brain regions and is involved in the regulation of emotional behaviour and adult neurogenesis, suggesting that TAAR5 antagonism may represent a novel therapeutic strategy for anxiety and depression. We used the AtomNet® model, the first deep learning neural network for structure-based drug discovery, to identify putative TAAR5 ligands and tested them in an in vitro BRET assay. We found two mTAAR5 antagonists with low to submicromolar activity that are able to inhibit the cAMP production induced by TMA. Moreover, these two compounds also inhibited the mTAAR5 downstream signalling, such as the phosphorylation of CREB and ERK. These two hits exhibit drug-like properties and could be used to further develop more potent TAAR5 ligands with putative anxiolytic and antidepressant activity.
Project description:There are two main families of G protein-coupled receptors that detect odours in humans, the odorant receptors (ORs) and the trace amine-associated receptors (TAARs). Their amino acid sequences are distinct, with the TAARs being most similar to the aminergic receptors such as those activated by adrenaline, serotonin and histamine. To elucidate the structural determinants of ligand recognition by TAARs, we have determined the cryo-EM structure of a murine receptor, mTAAR7f, coupled to the heterotrimeric G protein Gs and bound to the odorant N,N-dimethylcyclohexylamine (DMCH) to an overall resolution of 2.9 Å. DMCH is bound in a hydrophobic orthosteric binding site primarily through van der Waals interactions and a strong charge-charge interaction between the tertiary amine of the ligand and an aspartic acid residue. This site is distinct and non-overlapping with the binding site for the odorant propionate in the odorant receptor OR51E2. The structure, in combination with mutagenesis data and molecular dynamics simulations suggests that the activation of the receptor follows a similar pathway to that of the β-adrenoceptors, with the significant difference that DMCH interacts directly with one of the main activation microswitch residues.
Project description:Although flow cytometry is viewed as a mature technology, there have been dramatic advances in analysis capabilities, sorting, sample handling and sensitivity in the past decade. These advances contribute to its application in biological and chemical diversity, sample throughput, high content, and complex systems biology. This article will evaluate the new opportunities for flow cytometry relating to receptor assembly and pharmacology, as well as a range of screening applications.