Project description:Osteoarthritis (OA) is the most common degenerative joint disease worldwide, with the main pathological manifestation of articular cartilage degeneration. It have been investigated that pharmacological activation of transient receptor potential vanilloid 1 (TRPV1) significantly alleviated cartilage degeneration by abolishing chondrocyte ferroptosis. In this work, in view of the thermal activated feature of TRPV1, Citrate-stabilized gold nanorods (Cit-AuNRs) is conjugated to TRPV1 monoclonal antibody (Cit-AuNRs@Anti-TRPV1) as a photothermal switch for TRPV1 activation in chondrocytes under near infrared (NIR) irradiation. The conjugation of TRPV1 monoclonal antibody barely affect the morphology and physicochemical properties of Cit-AuNRs. Under NIR irradiation, Cit-AuNRs@Anti-TRPV1 exhibited good biocompatibility and flexible photothermal responsiveness. Intra-articular injection of Cit-AuNRs@Anti-TRPV1 followed by NIR irradiation significantly activated TRPV1 and attenuated cartilage degradation by suppressing chondrocytes ferroptosis. The osteophyte formation and subchondral bone sclerosis are remarkably alleviated by NIR-inspired Cit-AuNRs@Anti-TRPV1. Furthermore, the activation of TRPV1 by Cit-AuNRs@Anti-TRPV1 evidently improved physical activities and alleviated pain of destabilization of the medial meniscus (DMM)-induced OA mice. The study reveals Cit-AuNRs@Anti-TRPV1 under NIR irradiation protects chondrocytes from ferroptosis and attenuates OA progression, providing a potential therapeutic strategy for the treatment of OA.
Project description:ObjectiveThis study was undertaken to determine the role of CD38, which can function as an enzyme to degrade NAD+ , in osteoarthritis (OA) development.MethodsHuman knee cartilage from normal donors and OA donors were examined for CD38 expression. "Gain-of-function," through overexpression of CD38 via transient transfection, and "loss-of-function," through pharmacologic inhibition of CD38, approaches were used to assess the effects of CD38 on intracellular NAD+ :NADH ratio and catabolic activity in chondrocytes. We also initiated joint injury-induced OA by surgical destabilization of the medial meniscus (DMM) in CD38 knockout mice and wild-type (WT; C57BL/6) mice and in WT male mice in the presence or absence of apigenin treatment. Cartilage degradation, synovial inflammation, subchondral bone changes, and pain behavior were evaluated after DMM surgery. We also examined expression of CD38 and the neuropeptide calcitonin gene-related peptide (CGRP) in knee sections from these mice.ResultsCD38 expression was up-regulated in human knee OA cartilage and in chondrocytes stimulated with the proinflammatory cytokine interleukin-1β (IL-1β). Overexpression of CD38 in chondrocytes resulted in reduced cellular NAD+ :NADH ratio and augmented catabolic responses to IL-1β. These effects were reversed by pharmacologic inhibition of CD38. Cartilage degradation and synovial inflammation, associated with increased CD38 expression in cartilage and synovium, osteophyte formation and subchondral bone sclerosis, and pain-like behavior linked to increased CGRP expression in the synovium were observed in WT mice after joint injury. Such effects were significantly reduced in mice deficient in CD38 through either genetic knockout or pharmacologic inhibition.ConclusionCD38 deficiency exerts OA disease-modifying effects. Inhibition of CD38 has the potential to be a novel therapeutic approach for OA treatment.
Project description:Pain is the major reason that patients suffering from osteoarthritis (OA) seek medical care. We found that vascular endothelial growth factors (VEGFs) mediate signaling in OA pain pathways. To determine the specific contributions of VEGFs and their receptors (VEGFRs) to joint pathology and pain transmission during OA progression, we studied intra-articular (IA) injections of VEGF ligands into murine knee joints. Only VEGF ligands specific for the activation of VEGFR1, but not VEGFR2, induced allodynia within 30 min. Interventions in OA by inhibitors of VEGFRs were done in vivo using a preclinical murine OA model by IA injections of selective inhibitors of VEGFR1/VEGFR2 kinase (pazopanib) or VEGFR2 kinase (vandetanib). OA phenotypes were evaluated using pain-associated murine behavioral tests and histopathologic analyses. Alterations in VEGF/VEGFR signaling by drugs were determined in knee joints, dorsal root ganglia, and spinal cord by immunofluorescence microscopy. Pazopanib immediately relieved OA pain by interfering with pain transmission pathways. Pain reduction by vandetanib was mainly due to the inhibition of cartilage degeneration by suppressing VEGFR2 expression. In conclusion, IA administration of pazopanib, which simultaneously inhibits VEGFR1 and VEGFR2, can be developed as an ideal OA disease-modifying drug that rapidly reduces joint pain and simultaneously inhibits cartilage degeneration.
Project description:BACKGROUND:Patellofemoral pain (PFP) patients show increased prevalence of patellar malalignment. Structural and alignment abnormalities of the patellofemoral joint (PFJ) may play a role in development of PFP and patellofemoral osteoarthritis (PFOA). OBJECTIVES:Evaluating associations of patellofemoral alignment and femoral geometry with bony and cartilaginous abnormalities in PFP patients and healthy control subjects. METHODS:Data from a case-control study were used (64 PFP subjects, 70 control subjects, 57% female, age 23.2 (6.4)). Alignment and femoral geometry measures in the PFJ were determined using MRI. Structural abnormalities in the PFJ associated with OA (bone marrow lesions, osteophytes, minor cartilage defects and Hoffa-synovitis), quantified cartilage composition (T1ρ relaxation times) in the PFJ and perfusion within the patellar bone were examined using different MRI techniques. Associations were analyzed using regression analyses, adjusted for potential confounders. RESULTS:Lateral patellar tilt was negatively associated with presence of osteophytes on both patella (OR 0.91; 95% CI 0.84 to 0.98), anterior femur (OR 0.92; 95% CI 0.84 to 0.99) and minor cartilage defects on patella (OR 0.91; 95% CI 0.84 to 0.99). Patella alta was positively associated with the presence of bone marrow lesions in the patella and minor cartilage defects (OR 48.33; 95% CI 4.27 to 547.30 and OR 17.51; 95% CI 1.17 to 262.57, respectively). Patella alta and medial patellar translation were positively associated with T1ρ relaxation times within trochlear cartilage (β 5.2; 95% CI 0.77 to 9.58, and 0.36; 95% CI 0.08 to 0.64, respectively). None of the alignment and geometry measures were associated with bone perfusion. CONCLUSION:Our study implies that associations between patellofemoral alignment and geometry and structural joint abnormalities linked to OA are already present in both PFP patients and healthy control subjects.
Project description:The etiology of ankle osteoarthritis (OA) is largely unknown. We analyzed 24 ankle OA of 21 patients diagnosed by plain radiographs using magnetic resonance imaging (MRI). Ankle joint pain disappeared in 22 out of 24 joints by conservative treatment. MRI bone signal changes in and around the ankle joints were observed in 22 of 24 joints. Bone signal changes along the joint line were seen in 10 of 11 joints as a Kellgren-Lawrence (KL) grade of II to IV. Such signal changes were witnessed in only 4 of 13 joints with KL grade 0 or I. In the talocrural joint, bone alterations occurred in both tibia and talus bones through the joint line in cases of KL grade III or IV, while focal bone alterations were present in the talus only in KL grade I or II cases. Sixteen of 24 joints exhibited intraosseous bone signal changes, which tended to correspond to joint pain of any ankle OA stage. Our results suggest that bone alterations around the ankle joint might be one of the etiologies of OA and associated with ankle joint pain.
Project description:Psoriasis is an inflammatory skin disease with strong neutrophil (PMN) infiltration and high levels of the antimicrobial peptide, LL37. LL37 in complex with DNA and RNA is thought to initiate disease exacerbation via plasmacytoid dendritic cells. However, the source of nucleic acids supposed to start this initial inflammatory event remains unknown. We show here that primary murine and human PMNs mount a fulminant and self-propagating neutrophil extracellular trap (NET) and cytokine response, but independently of the canonical NET component, DNA. Unexpectedly, RNA, which is abundant in NETs and psoriatic but not healthy skin, in complex with LL37 triggered TLR8/TLR13-mediated cytokine and NET release by PMNs in vitro and in vivo. Transfer of NETs to naive human PMNs prompts additional NET release, promoting further inflammation. Our study thus uncovers a self-propagating vicious cycle contributing to chronic inflammation in psoriasis, and NET-associated RNA (naRNA) as a physiologically relevant NET component.
Project description:Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis.
Project description:The chronicity of osteoarthritis (OA), characterized by pain and inflammation in the joints, is linked to a glutamate receptor, N-methyl-D-aspartate (NMDA). The use of plant species such as Chenopodium ambrosioides L. (Amaranthaceae) as NMDA antagonists offers a promising perspective. This work aims to analyze the antinociceptive and anti-inflammatory responses of the crude hydroalcoholic extract (HCE) of C. ambrosioides leaves in an experimental OA model. Wistar rats were separated into six groups (n = 24): clean (C), negative control (CTL-), positive control (CTL+), HCE0.5, HCE5 and HCE50. The first group received no intervention. The other groups received an intra-articular injection of sodium monoiodoacetate (MIA) (8 mg/kg) on day 0. After six hours, they were orally treated with saline, Maxicam plus (meloxicam + chondroitin sulfate) and HCE at doses of 0.5 mg/kg, 5 mg/kg and 50 mg/kg, respectively. After three, seven and ten days, clinical evaluations were performed (knee diameter, mechanical allodynia, mechanical hyperalgesia and motor activity). On the tenth day, after euthanasia, synovial fluid and draining lymph node were collected for cellular quantification, and cartilage was collected for histopathological analysis. Finally, molecular docking was performed to evaluate the compatibility of ascaridole, a monoterpene found in HCE, with the NMDA receptor. After the third day, HCE reduced knee edema. HCE5 showed less cellular infiltrate in the cartilage and synovium and lower intensities of allodynia from the third day and of hyperalgesia from the seventh day up to the last treatment day. The HCE5 and HCE50 groups improved in forced walking. In relation to molecular docking, ascaridole showed NMDA receptor binding affinity. C. ambrosioides HCE was effective in the treatment of OA because it reduced synovial inflammation and behavioral changes due to pain. This effect may be related to the antagonistic effect of ascaridole on the NMDA receptor.
Project description:Aging or injury leads to degradation of the cartilage matrix and the development of osteoarthritis (OA). Because of a paucity of single-cell studies of OA cartilage, little is known about the interpatient variability in its cellular composition and, more importantly, about the cell subpopulations that drive the disease. Here, we profiled healthy and OA cartilage samples using mass cytometry to establish a single-cell atlas, revealing distinct chondrocyte progenitor and inflammation-modulating subpopulations. These rare populations include an inflammation-amplifying (Inf-A) population, marked by interleukin-1 receptor 1 and tumor necrosis factor receptor II, whose inhibition decreased inflammation, and an inflammation-dampening (Inf-D) population, marked by CD24, which is resistant to inflammation. We devised a pharmacological strategy targeting Inf-A and Inf-D cells that significantly decreased inflammation in OA chondrocytes. Using our atlas, we stratified patients with OA in three groups that are distinguished by the relative proportions of inflammatory to regenerative cells, making it possible to devise precision therapeutic approaches.