Project description:The polycyclic core of the akuammiline alkaloids can be synthesized from simple tryptamine and tryptophol derivatives via a Ag(I)-catalyzed enantioselective dearomative cyclization cascade sequence. The complex tetracyclic scaffolds are prepared via a rapid, versatile, three-step modular synthesis from simple commercially available indole derivatives in high yields and enantiomeric excess (up to 99% yield and >99% ee).
Project description:The enantioselective synthesis (3.7% overall yield in nine steps from 2) and biological screening of the ethyl analog of the macrocyclic marine alkaloid haliclorensin C (compound 5) are reported. Amino alcohol 3, generated by a LiNH₂BH₃-promoted reductive ring-opening/debenzylation sequence from phenylglycinol-derived lactam 2, was used as the starting chiral linear building block. Incorporation of the undecene chain via the nosyl derivative 12, methylenation of the pentanol moiety, and a ring-closing metathesis are the key steps of the synthesis.
Project description:A 1,2,3,4-tetrahydro-9a,4a-(iminoethano)-9H-carbazole (4) is a central structural feature of the Strychnos alkaloid minfiensine (1) and akuammiline alkaloids such as vincorine (5) and echitamine (6). A cascade catalytic asymmetric Heck-iminium cyclization was developed that rapidly provides 3,4-dihydro-9a,4a-(iminoethano)-9H-carbazoles in high enantiomeric purity. Two sequences were developed for advancing 3,4-dihydro-9a,4a-(iminoethano)-9H-carbazole 27 to (+)-minfiensine. In our first-generation approach, a reductive Heck cyclization was employed to form the fifth ring of (+)-minfiensine. In a second more concise total synthesis, an intramolecular palladium-catalyzed ketone enolate vinyl iodide coupling was employed to construct the final ring of (+)-minfiensine. This second-generation total synthesis of enantiopure (+)-minfiensine was accomplished in 6.5% overall yield and 15 steps from 1,2-cyclohexanedione and anisidine 13. A distinctive feature of this sequence is the use of palladium-catalyzed reactions to form all carbon-carbon bonds in the transformation of these simple precursors to (+)-minfiensine.
Project description:While interest in the synthetic chemistry of radical cations continues to grow, controlling enantioselectivity in the reactions of these intermediates remains a challenge. Based on recent insights into the oxidation of tryptophan in enzymatic systems, we report a photocatalytic method for the generation of indole radical cations as hydrogen-bonded adducts with chiral phosphate anions. These noncovalent open-shell complexes can be intercepted by the stable nitroxyl radical TEMPO· to form alkoxyamine-substituted pyrroloindolines with high levels of enantioselectivity. Further elaboration of these optically enriched adducts can be achieved via a catalytic single-electron oxidation/mesolytic cleavage sequence to furnish transient carbocation intermediates that may be intercepted by a wide range of nucleophiles. Taken together, this two-step sequence provides a simple catalytic method to access a wide range of substituted pyrroloindolines in enantioenriched form via a standard experimental protocol from a common synthetic intermediate. The design, development, mechanistic study, and scope of this process are presented, as are applications of this method to the synthesis of several dimeric pyrroloindoline natural products.
Project description:Nucleophilic catalysts for a 1,6 addition/Nazarov cyclization/elimination sequence were evaluated for their ability to induce enantioselectivity in the electrocyclization step. Of the tertiary amines examined, it was found that a cinchona alkaloid derivative was able to generate substituted 5-hydroxy γ-methylene cyclopentenones with excellent enantioselectivity. The study results suggest that successful cyclization depends upon the ability of the dienyl diketone substrate to readily adopt an s-cis conformation.
Project description:A new asymmetric synthesis of bicyclic pyrazolidinones through an alkaloid-catalyzed formal [3 + 2] cycloaddition of in situ generated ketenes and azomethine imines is described. The products were formed in good to excellent yields (52-99% for 17 examples), with good to excellent diastereoselectivity (dr 5:1 to 27:1 for 11 examples), and with excellent enantioselectivity in all cases (≥96% ee). This method represents the first unambiguous example of an enantioselective reaction between ketenes and a 1,3-dipole.
Project description:Concise and highly stereocontrolled total syntheses of racemic and enantiopure frog alkaloid 205B (1) were accomplished in 11 steps from 4-methoxypyridines 6 and 7 in overall yields of 8 and 8%, respectively. The assembly of the core of the natural product relies on a stereoselective Tsuji-Trost allylic amination reaction and a ring-closing metathesis. The synthesis features the use of an N-acylpyridinium salt reaction to introduce the first stereocenter and an unprecedented trifluoroacetic anhydride-mediated addition of an allylstannane to a vinylogous amide with complete facial selectivity. Deoxygenation of the C4 ketone proved difficult but was accomplished via a modified Barton-McCombie reaction in the presence of a catalytic amount of diphenyl diselenide.
Project description:An efficient stereoselective three-component reaction for the synthesis of functionalized spiro[4H-pyran-3,3'-oxindole] derivatives was realized through an organocatalyzed domino Knoevenagel/Michael/cyclization reaction using a cinchonidine-derived thiourea as the catalyst. Using water as the additive was found to improve the product ee values significantly. Under the optimized conditions, the reactions between isatins, malononitrile, and 1,3-dicarbonyl compounds yield the desired spirooxindole products in good yields (71-92%) and moderate to high ee values (up to 87% ee).
Project description:We report the development of a catalytic method for the enantioselective addition of indoles to pyrone-derived electrophiles. Arylpyrrolidino-derived thioureas catalyze the addition with high stereoselectivity in the presence of catalytic quantities of an achiral Brønsted acid. The indole-pyrone adducts feature a quaternary stereocenter and represent an unusual class of indolines bearing structural resemblance to the hybrid natural product pleiocarpamine.
Project description:Michael addition reactions of triketopiperazine (TKP) derivatives to enones, mediated by a cinchona alkaloid-derived catalyst, deliver products in high yield and enantiomeric ratio (er). Use of unsaturated ester, nitrile or sulfone partners gives bridged hydroxy-diketopiperazine (DKP) products resulting from a novel Michael addition-ring closure.