Project description:The present study aimed to investigate the expression of elongation of very long-chain fatty acids family member 6 (ELOVL6) in hepatocellular carcinoma (HCC) tissues, and to determine its role in the development of HCC. A total of 377 HCC specimens were collected for tissue microarray and immunohistochemistry analyses. The ELOVL6 IHC score for HCC tissues was 0.97±0.71, which was significantly lower than that of the matched adjacent normal tissues (1.32±0.68; P<0.001). Patients with low levels of ELOVL6 expression were older (P=0.014) and possessed larger sized tumors (P=0.039) than patients with high expression levels. Additionally, Kaplan-Meier analysis revealed that patients with low ELOVL6 expression levels also had significantly poorer overall (P<0.001) and disease-free (P=0.029) survival times, and a greater probability of recurrence. The tumor size, tumor-node-metastasis (TNM) stage, vascular invasion and ELOVL6 expression were all shown to be prognostic variables for overall survival in patients with HCC. Multivariate analysis revealed that vascular invasion (P<0.001), TNM stage (P<0.001) and ELOVL6 expression (P=0.001) were independent prognostic variables for overall survival. In addition, vascular invasion (P=0.032) and ELOVL6 expression (P=0.041) were independent risk factors for disease-free survival, and vascular invasion (P=0.019) and ELOVL6 expression (P=0.045) were independent risk factors associated with HCC recurrence. The present study revealed that in patients with HCC, ELOVL6 expression level was reduced in HCC tissues, and that higher ELOVL6 expression levels correlated with longer survival times. This indicates that ELOVL6 may serves as an independent marker of poor patient outcome.
Project description:PurposeTo assess the predictive value of radiomics features extracted from structural MRI, dynamic contrast enhanced (DCE), and diffusion tensor imaging (DTI) in detecting O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in patients with diffuse gliomas.MethodsRetrospective MRI data of 110 patients were enrolled in this study. The training dataset included 88 patients (mean age 52.84 ± 14.71, 47 females). The test dataset included 22 patients (mean age 50.64 ± 12.58, 12 females). A total of 2,782 radiomic features were extracted from structural MRI, DCE, and DTI within two region of interests (ROIs). Feature section was conducted using Pearson correlation and least absolute shrinkage and selection operator. Principal component analysis was utilized for dimensionality reduction. Support vector machine was employed for model construction. Two radiologists with 1 year and 5 years of experience evaluated the MGMT status in the test dataset as a comparison with the models. The chi-square test and independent samples t-test were used for assessing the statistical differences in patients' clinical characteristics.ResultsOn the training dataset, the model structural MRI + DCE achieved the highest AUC of 0.906. On the test dataset, the model structural MRI + DCE + DTI achieved the highest AUC of 0.868, outperforming two radiologists.ConclusionThe radiomics models have obtained promising performance in predicting MGMT promoter methylation status. Adding DCE and DTI features can provide extra information to structural MRI in detecting MGMT promoter methylation.
Project description:The identification of novel and accurate biomarkers is important to improve the prognosis of patients with hepatocellular carcinoma (HCC). C-Type lectin domain family 4 member M (CLEC4M) is involved in the progression of numerous cancer types. However, the clinical significance of CLEC4M in HCC is yet to be elucidated. The aim of the present study is to evaluate the involvement of CLEC4M in HCC progression. The expression level of CLEC4M was determined in tumor, and their corresponding adjacent non-tumor tissues derived from 88 patients with HCC, using immunohistochemistry, western blot and reverse transcription-quantitative PCR. The correlation between CLEC4M expression and certain clinicopathological characteristics was retrospectively analyzed. The results suggested that CLEC4M was specifically labeled in sinusoidal endothelial cells, in both HCC and non-tumor tissues. Moreover, the expression of CLEC4M in tumor tissues was significantly lower than that in non-tumor tissues (P<0.0001), which indicated its potential as a biomarker of the development of HCC. Subsequently, correlation analysis suggested that the relatively higher CLEC4M expression in HCC tissues was significantly associated with increased microvascular invasion (P=0.008), larger tumor size (P=0.018), absence of tumor encapsulation (P<0.0001) and lower tumor differentiation (P=0.019). Notably, patients with high CLEC4M expression levels in their tumor tissues experienced more frequent recurrence and shorter overall survival (OS) times compared with the low-expression group. Furthermore, CLEC4M expression in tumor tissues was identified as an independent and significant risk factor for recurrence-free survival and OS. The results of the present study suggest that CLEC4M may be a valuable biomarker for the prognosis of the patients with HCC, postoperatively.
Project description:Carbohydrate antigen 19-9 (CA19-9) fails to demonstrate the predictive value for early detection pancreatic ductal adenocarcinoma (PDAC). Glypican-1 (GPC1+) exosomes may serve as a noninvasive diagnostic tool to detect early stages of PDAC. Therefore, it is necessary to explore the serum GPC1 levels and determine whether serum GPC1 serves as a novel biomarker for PDAC patients. Blood samples were collected from 156 patients with PDAC, 199 non-cancer controls, and 240 patients with other cancers. Serological levels of GPC1 were examined by enzyme-linked immunosorbent assay (ELISA). Finally, a 5-year follow-up was monitored to evaluate the correlation between serum GPC1 levels and overall survival in 156 patients with PDAC. The results suggested that levels of serum GPC1 and CA19-9 were higher in PDAC patients than that of controls (P < 0.05). Serum GPC1 levels in PDAC were different from those in gallbladder carcinoma (P < 0.001), colorectal carcinoma (P < 0.001), gastric carcinoma (P < 0.001), and prostate cancer (P < 0.001), but not hepatocellular carcinoma (P = 0.395) and cholangiocarcinoma (P = 0.724). Receiver operating characteristic curve (ROC) analysis showed that serum CA19-9 was significantly better than serum GPC1 in distinguishing PDAC patients from the controls (AUC, 95% CI: 0.908, 0.868-0.947 vs 0.795, 0.749-0.841, respectively). The serum GPC1 cannot be used as a serum diagnostic biomarker for PDAC patients. The level of serum GPC1 decreased 2 days after surgery (P = 0.001), which were not different from serum GPC1 levels in healthy control (P = 0.381). The overall survival rate was shorter in patients with high levels of serum GPC1 compared to those with low levels of serum GPC1 (log-rank = 5.16, P = 0.023). Taken together, the results indicate that high levels of serum GPC1 predict poor prognosis in PDAC patients. Serum GPC1 may be a prognosis factor for PDAC patients.
Project description:Histone H3 mutations are frequently found in diffuse midline gliomas (DMGs), which include diffuse intrinsic pontine gliomas and thalamic gliomas. These tumors have dismal prognoses. Recent evidence suggests that one reason for the poor prognoses is that O6-methylguanine-DNA methyltransferase (MGMT) promoter frequently lacks methylation in DMGs. This review compares the epigenetic changes brought about by histone mutations to those by isocitrate dehydrogenase-mutant gliomas, which frequently have methylated MGMT promoters and are known to be sensitive to temozolomide.
Project description:Cellular immune disorder is a common characteristic of myelodysplastic syndrome (MDS). Abnormal natural killer (NK) cell function has been reported in MDS patients, and this is closely related to disease progression and poor prognosis. However, little is known about the association between the abnormal immune checkpoint (IC) that results in abnormal immune NK cell function and the prognosis of MDS. In this study, RNA-sequencing data from 80 patients in the GSE114922 dataset and bone marrow (BM) samples from 46 patients with MDS in our clinical center were used for overall survival (OS) analysis and validation. We found that the NK cell-related IC genes PDCD1, TIGIT, CD47, and KIR3DL2 had higher expression and correlated with poor OS for MDS patients. High expression of PDCD1 or TIGIT was significantly associated with poor OS for MDS patients younger than 60 years of age. Moreover, co-expression of PDCD1 and TIGIT had the greatest contribution to OS prediction. Interestingly, PDCD1, TIGIT, CD47, and KIR3DL2 and risk stratification based on the Revised International Prognostic Scoring System were used to construct a nomogram model, which could visually predict the 1-, 2-, and 3-year survival rates of MDS patients. In summary, high expression of IC receptors in the BM of MDS patients was associated with poor OS. The co-expression patterns of PDCD1, TIGIT, CD47, and KIR3DL2 might provide novel insights into designing combined targeted therapies for MDS.
Project description:Diffuse midline gliomas (DMGs) show resistance to many chemotherapeutic agents including temozolomide (TMZ). Histone gene mutations in DMGs trigger epigenetic changes including DNA hypomethylation, one of which is a frequent lack of O6-methyl-guanine-DNA methyltransferase (MGMT) promoter methylation, resulting in increased MGMT expression. We established the NGT16 cell line with HIST1H3B K27M and ACVR1 G328E gene mutations from a DMG patient and used this cell line and other DMG cell lines with H3F3A gene mutation (SF7761, SF8628, JHH-DIPG1) to analyze MGMT promoter methylation, MGMT protein expression, and response to TMZ. Three out of 4 DMG cell lines (NGT16, SF8628, and JHH-DIPG1) had unmethylated MGMT promoter, increased MGMT expression, and showed resistance to TMZ treatment. SF7761 cells with H3F3A gene mutation showed MGMT promoter methylation, lacked MGMT expression, and sensitivity to TMZ treatment. NGT16 line showed response to ALK2 inhibitor K02288 treatment in vitro. We confirmed in vitro that MGMT expression contributes to TMZ resistance in DMG cell lines. There is an urgent need to develop new strategies to treat TMZ-resistant DMGs.
Project description:This study aimed to investigate the feasibility of predicting oxygen 6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in diffuse gliomas by developing a deep learning approach using MRI radiomics. A total of 111 patients with diffuse gliomas participated in the retrospective study (56 patients with MGMT promoter methylation and 55 patients with MGMT promoter unmethylation). The radiomics features of the two regions of interest (ROI) (the whole tumor area and the tumor core area) for four sequences, including T1 weighted image (T1WI), T2 weighted image (T2WI), apparent diffusion coefficient (ADC) maps, and T1 contrast-enhanced (T1CE) MR images were extracted and jointly fed into the residual network. Then the deep learning method was developed and evaluated with a five-fold cross-validation, where in each fold, the dataset was randomly divided into training (80%) and validation (20%) cohorts. We compared the performance of all models using area under the curve (AUC) and average accuracy of validation cohorts and calculated the 10 most important features of the best model via a class activation map. Based on the ROI of the whole tumor, the predictive capacity of the T1CE and ADC model achieved the highest AUC value of 0.85. Based on the ROI of the tumor core, the T1CE and ADC model achieved the highest AUC value of 0.90. After comparison, the T1CE combined with the ADC model based on the ROI of the tumor core exhibited the best performance, with the highest average accuracy (0.91) and AUC (0.90) among all models. The deep learning method using MRI radiomics has excellent diagnostic performance with a high accuracy in predicting MGMT promoter methylation in diffuse gliomas.
Project description:Multiple metabolic pathways are utilized to maintain cellular homeostasis. Given the evidence that altered cell metabolism significantly contributes to glioma biology, the current research efforts aim to improve our understanding of metabolic rewiring between glioma's complex genotype and tissue context. In addition, extensive molecular profiling has revealed activated oncogenes and inactivated tumor suppressors that directly or indirectly impact the cellular metabolism that is associated with the pathogenesis of gliomas. The mutation status of isocitrate dehydrogenases (IDHs) is one of the most important prognostic factors in adult-type diffuse gliomas. This review presents an overview of the metabolic alterations in IDH-mutant gliomas and IDH-wildtype glioblastoma (GBM). A particular focus is placed on targeting metabolic vulnerabilities to identify new therapeutic strategies for glioma.
Project description:BackgroundThe KCa3.1 channel (KCNN4) is extensively investigated as an oncogene in human cancers. The current study aimed to explore the clinicopathological significance of KCNN4 expression in patients with primary adult-type diffuse gliomas.MethodsDemographic, RNA-seq, and follow-up data of 477 patients were retrospectively reviewed. Patients were divided into the experimental and validation groups (278 and 199). KCNN4-related genes were determined by Pearson correlation analysis, and enrichment analyses and tumor-infiltrating immune cell assessments were applied to explore the potential mechanisms of KCNN4 involving glioma progression. The Kaplan-Meier method and the Cox regression analysis were used to evaluate the prognostic value of KCNN4 expression.ResultsKCNN4 showed significantly higher expression level in glioblastoma, IDH-wildtype, followed by astrocytoma, IDH-mutant and oligodendroglioma, IDH-mutant and 1p/19q-codeleted (p < 0.001). Enrichment analyses and tumor-infiltrating immune cell assessments suggested that KCNN4 could involve glioma progression through extracellular regulation, affecting immune response, and modulating subcellular trafficking. At last, the Kaplan-Meier analysis showed that high KCNN4 expression was significantly correlated with poor progression-free and overall survival (p < 0.001 for both). While multivariate Cox regression analysis obtained an insignificant result.ConclusionsKCNN4 was identified to be overexpressed in glioma cells and its expression level is positively related to tumor malignancy. It potentially participates in glioma biology by affecting extracellular regulation, subcellular trafficking, and immune escape. Additionally, high KCNN4 expression was correlated with poor survival outcomes of patients. The results can shed new light on the mechanisms of glioma progression, and provide a potential therapeutic target for treating gliomas.