Project description:To improve the quality of cooked and frozen crayfish after repeated freeze-thaw cycles, the effects of alginate oligosaccharide (1 %, w/v) with ultrasound-assisted (40 W, 3 min) soaking (AUS) on the physicochemical properties were investigated. The AUS samples improved water-holding capacity with 19.47 % higher than the untreated samples. Low-field nuclear magnetic resonance confirmed that mobile water (T22) in the samples after 5 times of freeze-thaw cycles was reduced by 13.02 % and 29.34 % with AUS and without treatment, correspondingly; and with AUS and without treatment, average size of the ice crystals was around 90.26 μm2 and 113.73 μm2, and average diameter of the ice crystals was 5.83 μm and 8.14 μm, respectively; furthermore, it enhanced the solubility and zeta potential, lowered the surface hydrophobicity, reduced the particle size, and maintained the secondary and tertiary structures of myofibrillar protein (MP) after repeated freeze-thawing. Gel electrophoresis revealed that the AUS treatment mitigated the denaturation of MPs. Scanning electron microscopy revealed that the AUS treatment preserved the structure of the tissue. These findings demonstrated that the AUS treatment could enhance the water retention and physicochemical properties of protein within aquatic meat products during temperature fluctuations..
Project description:The emergence of an RNA catalyst capable of self-replication is considered a key transition in the origin of life. However, how such replicase ribozymes emerged from the pools of short RNA oligomers arising from prebiotic chemistry and non-enzymatic replication is unclear. Here we show that RNA polymerase ribozymes can assemble from simple catalytic networks of RNA oligomers no longer than 30 nucleotides. The entropically disfavoured assembly reaction is driven by iterative freeze-thaw cycles, even in the absence of external activation chemistry. The steep temperature and concentration gradients of such cycles result in an RNA chaperone effect that enhances the otherwise only partially realized catalytic potential of the RNA oligomer pool by an order of magnitude. Our work outlines how cyclic physicochemical processes could have driven an expansion of RNA compositional and phenotypic complexity from simple oligomer pools.
Project description:BackgroundCirculating inflammation markers are being increasingly measured in prospective cohorts to investigate cancer etiology. However, it is unclear how the measurements are affected by the freeze-thaw cycles of the specimens prior to marker analysis.MethodsWe compared concentrations of 45 inflammation markers between paired serum vials of 55 participants in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial that have undergone one (T1), two (T2), and three (T3) freeze-thaw cycles at the time of assay. We computed the difference of analyte concentrations across paired vials (T1 vs. T2, T2 vs. T3) and tested whether the difference deviated from zero using the Wilcoxon signed-rank test. We also calculated Spearman rank correlation and weighted kappa statistics for T1 vs. T2 and T2 vs. T3 comparisons to assess agreement in rank ordering of subjects.ResultsMeasurements between paired T1 and T2 samples were largely similar, with the difference not statistically deviating from zero for 36 of the 45 markers. In contrast, tests of the difference between paired T2 and T3 samples were statistically significant for 36 markers. However, the rank ordering of participants by marker concentration remained largely consistent across T2 and T3 samples, with Spearman correlation coefficients >0.8 for 42 markers and weighted kappas >0.7 for 37 markers.ConclusionWe recommend that studies measuring inflammation markers use previously unthawed specimens to the extent possible, or match on the number of prior freeze-thaw cycles in nested case-control studies.
Project description:We studied the effect of freeze-thaw on isoflavone composition in germinated soybeans, particularly the conversion of aglycones, the isoflavone monomers with high biological activity. Germinated soybeans were frozen at -20 °C, -80 °C, and -196 °C respectively, and then the frozen samples (-20 °C) were thawed at 4 °C, 10 °C, and 25 °C respectively. Results showed total isoflavone increased after germination. Aglycones content increased most at -20 °C, which increased about 24 times. The effect of thaw temperature and time indicated there were approximately 89 % glucosides forms converted to aglycones during freeze-thaw. Isoflavone conjugate-hydrolyzing β-glucosidase (ICHG) activity increased by 65.78 % (25 °C) and 59.14 % (48 h) with freeze-thaw. The cells of germinated soybeans were broken, promoting ICHG contact with glucosides and malonyl-glucosides. These results indicated that freeze-thaw greatly changed the content and profile of isoflavones, resulting in a sharp increase in the content of aglycones.
Project description:Tissue material properties are crucial to understanding their mechanical function, both in healthy and diseased states. However, in certain circumstances logistical limitations can prevent testing on fresh samples necessitating one or more freeze-thaw cycles. To date, the nature and extent to which the material properties of articular cartilage are altered by repetitive freezing have not been explored. Therefore, the aim of this study is to quantify how articular cartilage mechanical properties, measured by nanoindentation, are affected by multiple freeze-thaw cycles. Canine cartilage plugs (n = 11) from medial and lateral femoral condyles were submerged in phosphate buffered saline, stored at 3-5°C and tested using nanoindentation within 12h. Samples were then frozen at -20°C and later thawed at 3-5°C for 3h before material properties were re-tested and samples re-frozen under the same conditions. This process was repeated for all 11 samples over three freeze-thaw cycles. Overall mean and standard deviation of shear storage modulus decreased from 1.76 ± 0.78 to 1.21 ± 0.77MPa (p = 0.91), shear loss modulus from 0.42 ± 0.19 to 0.39 ± 0.17MPa (p=0.70) and elastic modulus from 5.13 ± 2.28 to 3.52 ± 2.24MPa (p = 0.20) between fresh and three freeze-thaw cycles respectively. The loss factor increased from 0.31 ± 0.38 to 0.71 ± 1.40 (p = 0.18) between fresh and three freeze-thaw cycles. Inter-sample variability spanned as much as 10.47MPa across freezing cycles and this high-level of biological variability across samples likely explains why overall mean "whole-joint" trends do not reach statistical significance across the storage conditions tested. As a result multiple freeze-thaw cycles cannot be explicitly or statistically linked to mechanical changes within the cartilage. However, the changes in material properties observed herein may be sufficient in magnitude to impact on a variety of clinical and scientific studies of cartilage, and should be considered when planning experimental protocols.
Project description:The effects of cement dosage, compaction coefficient, molding method (vertical vibration method and static pressure method), and dry-wet and freeze-thaw cycles on the mechanical strength of cement-improved loess (CIL) were studied to reveal its strength degradation law under dry-wet and freeze-thaw cycles. Results show that when using the vertical vibration molding method, the strength degradation effect of CIL can be improved by increasing the cement dosage and compaction coefficient; however, it is not obvious. Under the action of dry-wet cycle, damages, such as voids and cracks of CIL, develop continuously. Further, the strength deteriorates continuously and does not decrease after more than 15 dry-wet cycles. Therefore, the dry-wet cycle degradation system is selected by considering the most unfavorable conditions. In the process of freeze-thaw alternation, the pores and fissures of CIL develop and evolve continuously and the strength deteriorates continuously under the joint influence of water and low temperature. The strength tends to become stable after more than 12 freeze-thaw cycles. According to the safety principle, the deterioration coefficient of the freeze-thaw cycles is 0.3.
Project description:Ultracold preservation is widely used for storage of genetic stocks of Caenorhabditis elegans Current cryopreservation protocols are vulnerable to refrigeration failures, which can result in the loss of stock viability due to damage during re-freezing. Here we present a method for preserving worms in a dehydrated and frozen form that retains viability after multiple freeze-thaw cycles. After dehydration in the presence of trehalose or glycerol, C. elegans stocks can be frozen and thawed multiple times while maintaining viability. While both dauer and non-dauer larvae survive desiccation and freezing, the dauer defective mutant daf-16 does not survive desiccation. Our technique is useful for storing stocks in a manner robust to freezer failures, and potentially for shipping strains between laboratories.
Project description:This study investigates the thermal conductivity (λ) and volumetric heat capacity (C) of sandy soil samples under a variety of conditions, including freeze-thaw cycles at temperatures both above and below zero and differing moisture levels. To estimate these thermal properties, a novel predictive model, EFAttNet, was developed, which utilizes custom-designed embedding and attention-based fusion networks. When compared to traditional de Vries empirical models and other baseline algorithms, EFAttNet demonstrated superior accuracy. Preliminary measurements showed that λ values increased linearly with moisture content but decreased with temperature, whereas C values exhibited a rising trend with both moisture content and freezing temperature. Following freeze-thaw cycles, both λ and C were positively influenced by moisture content and freezing temperature. The EFAttNet-based model proved highly accurate in predicting thermal properties, particularly effective at capturing nonlinear relationships among the influencing factors. Among these factors, the degree of saturation had the most significant impact, followed by the number of freeze-thaw cycles, subzero temperatures, porosity, and moisture content. Notably, dry density exerted minimal influence on thermal properties, likely due to the overriding effects of other factors or specific soil characteristics, such as particle size distribution or mineralogical composition. These findings have significant implications for construction and engineering projects, especially in terms of sustainability and energy efficiency. The demonstrated accuracy of the EFAttNet-based model in estimating thermal properties under various conditions holds promise for practical applications. Although focused on specific soil types and conditions, the insights gained can guide further research and development in managing soil thermal properties across diverse environments, thereby enhancing our understanding and application in this field.
Project description:Freeze-thaw cycles (FTC) alter soil function through changes to physical organization of the soil matrix and biogeochemical processes. Understanding how dynamic climate and soil properties influence FTC may enable better prediction of ecosystem response to changing climate patterns. In this study, we quantified FTC occurrence and frequency across 40 National Ecological Observatory Network (NEON) sites. We used site mean annual precipitation (MAP) and mean annual temperature (MAT) to define warm and wet, warm and dry, and cold and dry climate groupings. Site and soil properties, including MAT, MAP, maximum-minimum temperature difference, aridity index, precipitation as snow (PAS), and organic mat thickness, were used to characterize climate groups and investigate relationships between site properties and FTC occurrence and frequency. Ecosystem-specific drivers of FTC provided insight into potential changes to FTC dynamics with climate warming. Warm and dry sites had the most FTC, driven by rapid diurnal FTC close to the soil surface in winter. Cold and dry sites were characterized by fewer, but longer-duration FTC, which mainly occurred in spring and increased in number with higher organic mat thickness (Spearman's ⍴ = 0.97, p < 0.01). The influence of PAS and MAT on the occurrence of FTC depended on climate group (binomial model interaction p (χ2) < 0.05), highlighting the role of a persistent snowpack in buffering soil temperature fluctuations. Integrating ecosystem type and season-specific FTC patterns identified here into predictive models may increase predictive accuracy for dynamic system response to climate change.
Project description:IntroductionFreeze-thaw instability may contribute to preanalytical variation in blood-based biomarker studies. We investigated the effects of up to four freeze-thaw cycles on single molecule array immunoassays of serum neurofilament light chain and plasma total tau, amyloid β 1-40 (Aß40), and Aβ 1-42 (Aβ42).MethodsIndividuals who had peripheral venepuncture during investigation of suspected neurodegenerative disease were recruited. After standardized preprocessing, 200 μL of plasma and serum aliquots were stored at -80°C within 60 minutes. Aliquots underwent one to four freeze-thaw cycles.ResultsThere was no significant difference across four freeze-thaw cycles for serum neurofilament light chain (n = 12), plasma total tau (n = 11), or plasma Aβ42 (n = 12). For plasma Aβ40 (n = 14), there were significant median reductions by ratios of .96 and .92 at the third and fourth cycles, respectively.DiscussionUp to four freeze-thaw cycles do not influence single molecule array blood biomarkers of neurofilament light chain, total tau, or Aβ42, with at most minor reductions in Aβ40.