Project description:Next-generation sequencing-based comprehensive genomic profiling test (CGPT) enables clinicians and patients to access promising molecularly targeted therapeutic agents. Approximately 10% of patients who undergo CGPT receive an appropriate agent. However, its coverage of glioma patients is seldom reported. The aim of this study was to reveal the comprehensive results of CGPT in glioma patients in our institution, especially the clinical actionability. We analyzed the genomic aberrations, tumor mutation burden scores, and microsatellite instability status. The Molecular Tumor Board (MTB) individually recommended a therapeutic agent and suggested further confirmation of germline mutations after considering the results. The results of 65/104 patients with glioma who underwent CGPTs were reviewed by MTB. Among them, 12 (18.5%) could access at least one therapeutic agent, and 5 (7.7%) were suspected of germline mutations. A total of 49 patients with IDH-wildtype glioblastoma showed frequent genomic aberrations in the following genes: TERT promoter (67%), CDKN2A (57%), CDKN2B (51%), MTAP (41%), TP53 (35%), EGFR (31%), PTEN (31%), NF1 (18%), BRAF (12%), PDGFRA (12%), CDK4 (10%), and PIK3CA (10%). Since glioma patients currently have very limited standard treatment options and a high recurrence rate, CGPT might be a facilitative tool for glioma patients in terms of clinical actionability and diagnostic value.
Project description:Comprehensive genomic profiling (CGP) tests have been covered by public insurance in Japan for patients with advanced solid tumors who have completed or are completing standard treatments or do not have them. Therefore, genotype-matched drug candidates are often unapproved or off-label, and improving clinical trial access is critical, involving the appropriate timing of CGP tests. To address this issue, we analyzed the previous treatment data for 441 patients from an observational study on CGP tests discussed by the expert panel at Hokkaido University Hospital between August 2019 and May 2021. The median number of previous treatment lines was two; three or more lines accounted for 49%. Information on genotype-matched therapies was provided to 277 (63%). Genotype-matched clinical trials were ineligible because of an excess number of previous treatment lines or use of specific agents were found in 66 (15%) patients, with the highest proportion in breast and prostate cancers. Many patients met the exclusion criteria of one to two or more treatment lines across cancer types. In addition, previous use of specific agents was a frequent exclusion criterion for breast, prostate, colorectal, and ovarian cancers. The patients with tumor types with a low median number (two or fewer) of previous treatment lines, including most rare cancers, primary unknown cancers, and pancreatic cancers, had significantly fewer ineligible clinical trials. The earlier timing of CGP tests may improve access to genotype-matched clinical trials, with their proportion varying by cancer type. Each relevant society needs to advocate the desirable timing of CGP testing nationwide.
Project description:Although comprehensive genomic profiling (CGP) tests have been covered under the Japanese national health insurance program since 2018, the utility and issues of CGP tests have not been clarified. We retrospectively reviewed 115 patients with incurable pancreatic cancer (IPC) who underwent CGP tests in a Japanese cancer referral center from November 2019 to August 2021. We evaluated the results of CGP tests, treatments based on CGP tests, and survival time. Eight cases (6.9%) were diagnosed as tumor mutation burden-high (TMB-H) and/or microsatellite instability-high (MSI-H). The gene mutation rates of KRAS/TP53/CDKN2A/SMAD4 were 93.0/83.0/53.0/25.2%, respectively. Twenty-five patients (21.7%) had homologous recombination deficiency (HRD)-related genetic mutations. Four patients (3.5%) having TMB-H and/or MSI-H were treated with pembrolizumab, and only two patients (1.7%) participated in the clinical trials. Patient characteristics were not significantly different between patients with and without HRD-related gene mutations. The median OS was significantly longer in the HRD (+) group than in the HRD (-) group (749 days vs. 519 days, p = 0.047). In multivariate analysis, HRD-related gene mutation was an independent prognostic factor associated with favorable OS. CGP tests for patients with IPC have the potential utility of detecting HRD-related gene mutations as prognostic factors as well as a therapeutic search.
Project description:Previous clinical trials indicate that 10%-25% of patients received genomically matched therapy after comprehensive genomic profiling (CGP) tests. However, the clinical utility of CGP tests has not been assessed in clinical practice. We assessed the clinical utility of CGP tests for advanced or metastatic solid tumor and determined the proportion of patients receiving genomically matched therapy among those with common and non-common cancers. From August 2019 to July 2020, a total of 418 patients had undergone CGP tests, and the results were discussed through the molecular tumor board at our site. The median age of patients was 57 (range: 3-86) years. Colorectal cancer was the most common, with 47 (11%) patients. Actionable genomic alterations (median 3, range: 1-17) were identified in 368 (88.0%) of 418 patients. Druggable genomic alterations were determined in 196 (46.9%) of 418 patients through the molecular tumor board. Genomically matched therapy was administered as the subsequent line of therapy in 51 (12.2%) patients, which is comparable to the proportion we previously reported in a clinical trial (13.4%) (p = 0.6919). The proportion of patients receiving genomically matched therapy was significantly higher among those with common cancers (16.2%) than non-common cancers (9.4%) (p = 0.0365). Genomically matched therapy after the CGP tests was administered to 12.2% of patients, which is similar to the proportion reported in the previous clinical trials. The clinical utility of CGP tests in patients with common cancers greatly exceeded that in patients with non-common cancers.
Project description:With the recent advances of next generation sequencing technologies, comprehensive genomic profiling (CGP) tests, which are designed to measure more than hundreds of cancer-related genes at a time, have now been widely introduced into daily clinical practice. For the patients whose tumor samples are not fit for tissue-based CGP tests, a blood-based CGP test (liquid biopsy) is available as an alternative option. Three CGP tests, "OncoGuide NCC™Oncopanel System (124 genes)", "FoundationOne®CDx (324 genes)", and "Founda-tionOne®CDx Liquid (324 genes)", are now reimbursed by public insurance in 233 hospitals designated for cancer genomic medicine in Japan. In biliary tract cancer, the prevalence of druggable variants is relatively higher compared to other cancer types and the European Society for Medical Oncology recommends routine use of CGP tests for advanced biliary tract cancer to guide treatment options. The latest National Cancer Center Network guideline lists eight druggable markers (NTRK fusion, MSI-H, TMB-H, BRAF V600E, FGFR2 fusions/rearrangement, IDH1 mutations, RET fusion, and HER2 overexpression) and matched therapies. In Japan, matched therapies for four markers (NTRK, MSI-H, TMB-H, and FGFR2) are reimbursed by public insurance (as of September 2022). The progress of genomic profiling technology will contribute to the improvement of the dismal clinical outcomes of this disease in the future.
Project description:Comprehensive cancer genome profiling (CGP) has been nationally reimbursed in Japan since June 2019. Less than 10% of the patients have been reported to undergo recommended treatment. Todai OncoPanel (TOP) is a dual DNA-RNA panel as well as a paired tumor-normal matched test. Two hundred patients underwent TOP as part of Advanced Medical Care B with approval from the Ministry of Health, Labour and Welfare between September 2018 and December 2019. Tests were carried out in patients with cancers without standard treatment or when patients had already undergone standard treatment. Data from DNA and RNA panels were analyzed in 198 and 191 patients, respectively. The percentage of patients who were given therapeutic or diagnostic recommendations was 61% (120/198). One hundred and four samples (53%) harbored gene alterations that were detected with the DNA panel and had potential treatment implications, and 14 samples (7%) had a high tumor mutational burden. Twenty-two samples (11.1%) harbored 30 fusion transcripts or MET exon 14 skipping that were detected by the RNA panel. Of those 30 transcripts, 6 had treatment implications and 4 had diagnostic implications. Thirteen patients (7%) were found to have pathogenic or likely pathogenic germline variants and genetic counseling was recommended. Overall, 12 patients (6%) received recommended treatment. In summary, patients benefited from both TOP DNA and RNA panels while following the same indication as the approved CGP tests. (UMIN000033647).
Project description:BackgroundA paradigm shift has occurred in cancer chemotherapy from tumor-specific treatment with cytotoxic agents to personalized medicine with molecular-targeted drugs. Thus, it is essential to identify genomic alterations and molecular features to recommend effective targeted molecular medicines regardless of the tumor site. Nevertheless, it takes considerable expertise to identify treatment targets from primary-sequencing data in order to provide drug recommendations. The Molecular Tumor Board (MTB) denotes a platform that integrates clinical and molecular features for clinical decisions.MethodsThis study retrospectively analyses all the cases of discussion and decision at the MTB in Tohoku University Hospital and summarizes genetic alterations and treatment recommendations.ResultsThe MTB discussed 1003 comprehensive genomic profiling (CGP) tests conducted in patients with solid cancer, and the resulting rate of assessing treatment recommendations was approximately 19%. Among hundreds of genes in the CGP test, only 30 genetic alterations or biomarkers were used to make treatment recommendations. The leading biomarkers that led to treatment recommendations were tumor mutational burden-high (TMB-H) (n = 32), ERBB2 amplification (n = 24), BRAF V600E (n = 16), and BRCA1/2 alterations (n = 32). Thyroid cancer accounted for most cancer cases for which treatment recommendation was provided (81.3%), followed by non-small cell lung cancer (42.4%) and urologic cancer (31.3%). The number of tests performed for gastrointestinal cancers was high (n = 359); however, the treatment recommendations for the same were below average (13%).ConclusionThe results of this study may be used to simplify treatment recommendations from the CGP reports and help select patients for testing, thereby increasing the accuracy of personalized medicine.
Project description:Existing guidance regarding clinically informed germline testing for patients with cancer is effective for evaluation of classic hereditary cancer syndromes and established gene/cancer type associations. However, current screening methods may miss patients with rare, reduced penetrance, or otherwise occult hereditary risk. Secondary finding of suspected germline variants that may confer inherited cancer risk via tumor comprehensive genomic profiling (CGP) has the potential to help address these limitations. However, reporting practices for secondary finding of germline variants are inconsistent, necessitating solutions for transparent and coherent communication of these potentially important findings. A workflow for improved confidence detection and clear reporting of potential pathogenic germline variants (PPGV) in select cancer susceptibility genes (CSG) was applied to a research dataset from real-world clinical tumor CGP of > 125,000 patients with advanced cancer. The presence and patterns of PPGVs identified across tumor types was assessed with a focus on scenarios in which traditional clinical germline evaluation may have been insufficient to capture genetic risk. PPGVs were identified in 9.7% of tumor CGP cases using tissue- and liquid-based assays across a broad range of cancer types, including in a number of "off-tumor" contexts. Overall, PPGVs were identified in a similar proportion of cancers with National Comprehensive Cancer Network (NCCN) recommendations for germline testing regardless of family history (11%) as in all other cancer types (9%). These findings suggest that tumor CGP can serve as a tool that is complementary to traditional germline genetic evaluation in helping to ascertain inherited susceptibility in patients with advanced cancer.
Project description:PurposeThere is variability in utilization of Comprehensive Genomic Profiling (CGP) in most of the metastatic solid tumors (MST). We evaluated the CGP utilization patterns and its impact on outcomes at an academic tertiary center.Patients and methodsInstitutional database was reviewed for CGP data in adult patients with MST between 01/2012 - 04/2020. Patients were categorized based on interval between CGP and metastatic diagnosis; 3 tertiles of distribution (T1-earliest to the diagnosis, T3-furthest), and pre-mets (CGP performed prior to diagnosis of metastasis). Overall survival (OS) was estimated from the time of metastatic diagnosis with left truncation at the time of CGP. Cox regression model was used to estimate the impact of timing of CGP on survival.ResultsAmong 1,358 patients, 710 were female, 1,109 Caucasian, 186 Afro-Americans, and 36 Hispanic. The common histologies were lung cancer (254; 19%), colorectal cancer (203; 15%), gynecologic cancers (121; 8.9%), and pancreatic cancer (106; 7.8%). Time interval between diagnosis of metastatic disease and CGP was not statistically significantly different based on sex, race and ethnicity after adjusting for histologic diagnoses with 2 exceptions - Hispanics with lung cancer had delayed CGP compared to non-Hispanics (p =0.019) and females with pancreas cancer had delayed CGP compared to males (p =0.025). Lung cancer, gastro-esophageal cancer and gynecologic malignancies had better survival if they had CGP performed during the first tertile after metastatic diagnosis.ConclusionCGP utilization across cancer types was equitable irrespective of sex, race and ethnicity. Early CGP after metastatic diagnosis might have effect on treatment delivery and clinical outcomes in cancer type with more actionable targets.
Project description:BackgroundThe nucleic acid quality from formalin-fixed paraffin-embedded (FFPE) tumor vary among samples, resulting in substantial variability in the quality of comprehensive cancer genomic profiling tests. The objective of the study is to investigate how nucleic acid quality affects sequencing quality. We also examined the variations in nucleic acid quality among different hospitals or cancer types.MethodsThree nucleic acid quality metrics (ddCq, Q-value, and DV200) and five sequencing quality metrics (on-target rate, mean depth, coverage uniformity, target exon coverage, and coverage of the housekeeping gene) were examined using 585 samples from the Todai OncoPanel, a dual DNA-RNA panel.ResultsIn the DNA panel, ddCq served as an indicator of sequencing depth and Q-value reflected the uniformity of sequencing across different regions. It was essential to have favorable values not only for ddCq but also for Q-value to obtain ideal sequencing results. For the RNA panel, DV200 proved to be a valuable metric for assessing the coverage of the housekeeping genes. Significant inter-hospital differences were observed for DNA quality (ddCq and Q-value), but not for RNA quality (DV200). Differences were also observed among cancer types, with Q-value being the lowest in lung and the highest in cervix, while DV200 was the highest in lung and the lowest in bowel.ConclusionsWe demonstrated distinct characteristics and high predictive performances of ddCq, Q-value, and DV200. Variations were observed in the nucleic acid quality across hospitals and cancer types. Further study is warranted on preanalytical factors in comprehensive cancer genomic profiling tests.