Project description:Yersinia ruckeri causes outbreaks of enteric redmouth disease in salmon aquaculture all over the world. The transient antibiotic tolerance exhibited by bacterial persisters is commonly thought to be responsible for outbreaks; however, the molecular factors underlying this behavior have not been explored in Y. ruckeri. In this study, we investigated the participation of the RNA chaperone Hfq from Y. ruckeri in antibiotic persistence. Cultures of the hfq-knockout mutant (Δhfq) exhibited faster replication, increased ATP levels and a more reductive environment than the wild type. The growth curves of bacteria exposed to sublethal concentrations of ampicillin, oxolinic acid, ciprofloxacin and polymyxin B revealed a greater susceptibility for the Δhfq strain. The time-kill curves of bacteria treated with the antibiotics mentioned above and florfenicol, using inoculums from exponential, stationary and biofilm cultures, demonstrated that the Δhfq strain has significant defects in persister cells production. To shed more light on the role of Hfq in antibiotic persistence, we analyzed its dependence on the (p)ppGpp synthetase RelA by determining the persister cells production in the absence of the relA gene. The ΔrelA and ΔrelAΔhfq strains displayed similar defects in persister cells formation, but higher than Δhfq strain. Similarly, stationary cultures of the ΔrelA and ΔrelAΔhfq strains exhibited comparable levels of ATP but higher than that of the Δhfq strain, indicating that relA is epistatic over hfq. Taken together, our findings provide valuable information on antibiotic persistence in Y. ruckeri, shedding light on the participation of Hfq in the persistence phenomenon.
Project description:While both virulent and putatively avirulent Yersinia ruckeri strains exist in aquaculture environments, the relationship between the distribution of virulence-associated factors and de facto pathogenicity in fish remains poorly understood. Pan-genome analysis of 18 complete genomes, representing established virulent and putatively avirulent lineages of Y. ruckeri, revealed the presence of a number of accessory genetic determinants. Further investigation of 68 draft genome assemblies revealed that the distribution of certain putative virulence factors correlated well with virulence and host-specificity. The inverse-autotransporter invasin locus yrIlm was, however, the only gene present in all virulent strains, while absent in lineages regarded as avirulent. Strains known to be associated with significant mortalities in salmonid aquaculture display a combination of serotype O1-LPS and yrIlm, with the well-documented highly virulent lineages, represented by MLVA clonal complexes 1 and 2, displaying duplication of the yrIlm locus. Duplication of the yrIlm locus was further found to have evolved over time in clonal complex 1, where some modern, highly virulent isolates display up to three copies.
Project description:Rapid, inexpensive, and sensitive nucleic acid detection may aid point-of-care pathogen detection, genotyping, and disease monitoring. The RNA-guided, RNA-targeting clustered regularly interspaced short palindromic repeats (CRISPR) effector Cas13a (previously known as C2c2) exhibits a "collateral effect" of promiscuous ribonuclease activity upon target recognition. We combine the collateral effect of Cas13a with isothermal amplification to establish a CRISPR-based diagnostic (CRISPR-Dx), providing rapid DNA or RNA detection with attomolar sensitivity and single-base mismatch specificity. We use this Cas13a-based molecular detection platform, termed Specific High-Sensitivity Enzymatic Reporter UnLOCKing (SHERLOCK), to detect specific strains of Zika and Dengue virus, distinguish pathogenic bacteria, genotype human DNA, and identify mutations in cell-free tumor DNA. Furthermore, SHERLOCK reaction reagents can be lyophilized for cold-chain independence and long-term storage and be readily reconstituted on paper for field applications.
Project description:Yersinia ruckeri is the etiologic agent of enteric red mouth disease (ERM), a severe fish disease prevailing in worldwide aquaculture industries. Here we report for the first time the complete genome of Y. ruckeri (Yersinia ruckeri) SC09, a highly virulent strain isolated from Ictalurus punctatus with severe septicemia. SC09 possesses a single chromosome of 3,923,491 base pairs, which contains 3651 predicted protein coding sequences (CDS), 19 rRNA genes, and 79 tRNA genes. Among the CDS, we have identified a Ysa locus containing genes encoding all the components of a type III secretion system (T3SS). Comparative analysis suggest that SC09-Ysa share extensive similarity in sequence, gene content, and gene arrangement with Salmonella enterica pathogenicity island 1 (SPI1) and chromosome-encoded T3SS from Yersinia enterocolitica biotype 1B. Furthermore, phylogenetic analysis shown that SC09-Ysa and SPI1-T3SS belong on the same branch of the phylogenetic tree. These results suggest that SC09-Ysa and SPI1-T3SS appear to mediate biological function to adapt to specific hosts with a similar niche, and both of them are likely to facilitate the development of an intracellular niche. In addition, our analysis also indicated that a substantial part of the SC09 genome might contribute to adaption in the intestinal microenvironment, including a number of proteins associated with aerobic or anaerobic respiration, signal transduction, and various stress reactions. Genomic analysis of the bacterium offered insights into the pathogenic mechanism associated with intracellular infection and intestinal survivability, which constitutes an important first step in understanding the pathogenesis of Y. ruckeri.
Project description:Yersinia ruckeri is the aetiological agent of enteric redmouth (ERM) disease and is responsible for significant economic losses in farmed salmonids. Enteric redmouth disease is associated primarily with rainbow trout (Oncorhynchus mykiss, Walbaum) but its incidence in Atlantic salmon (Salmo salar) is increasing. Outer membrane proteins (OMPs) of Gram-negative bacteria are located at the host-pathogen interface and play important roles in virulence. The outer membrane of Y. ruckeri is poorly characterised and little is known about its composition and the roles of individual OMPs in virulence. Here, we employed a bioinformatic pipeline to first predict the OMP composition of Y. ruckeri. Comparative proteomic approaches were subsequently used to identify those proteins expressed in vitro in eight representative isolates recovered from Atlantic salmon and rainbow trout. One hundred and forty-one OMPs were predicted from four Y. ruckeri genomes and 77 of these were identified in three or more genomes and were considered as "core" proteins. Gel-free and gel-based proteomic approaches together identified 65 OMPs in a single reference isolate and subsequent gel-free analysis identified 64 OMPs in the eight Atlantic salmon and rainbow trout isolates. Together, our gel-free and gel-based proteomic analyses identified 84 unique OMPs in Y. ruckeri. SIGNIFICANCE: Yersinia ruckeri is an important pathogen of Atlantic salmon and rainbow trout and is of major economic significance to the aquaculture industry worldwide. Disease outbreaks are becoming more problematic in Atlantic salmon and there is an urgent need to investigate in further detail the cell-surface (outer membrane) composition of strains infecting each of these host species. Currently, the outer membrane of Y. ruckeri is poorly characterised and very little is known about the OMP composition of strains infecting each of these salmonid species. This study represents the most comprehensive comparative outer membrane proteomic analysis of Y. ruckeri to date, encompassing isolates of different biotypes, serotypes, OMP-types and hosts of origin and provides insights into the potential roles of these diverse proteins in host-pathogen interactions. The study has identified key OMPs likely to be involved in disease pathogenesis and makes a significant contribution to furthering our understanding of the cell-surface composition of this important fish pathogen that will be relevant to the development of improved vaccines and therapeutics.
Project description:Enteric redmouth disease (ERM) is a serious septicemic bacterial disease of salmonid fish species. It is caused by Yersinia ruckeri, a Gram-negative rod-shaped enterobacterium. It has a wide host range, broad geographical distribution, and causes significant economic losses in the fish aquaculture industry. The disease gets its name from the subcutaneous hemorrhages, it can cause at the corners of the mouth and in gums and tongue. Other clinical signs include exophthalmia, darkening of the skin, splenomegaly and inflammation of the lower intestine with accumulation of thick yellow fluid. The bacterium enters the fish via the secondary gill lamellae and from there it spreads to the blood and internal organs. Y. ruckeri can be detected by conventional biochemical, serological and molecular methods. Its genome is 3.7 Mb with 3406-3530 coding sequences. Several important virulence factors of Y. ruckeri have been discovered, including haemolyin YhlA and metalloprotease Yrp1. Both non-specific and specific immune responses of fish during the course of Y. ruckeri infection have been well characterized. Several methods of vaccination have been developed for controlling both biotype 1 and biotype 2 Y. ruckeri strains in fish. This review summarizes the current state of knowledge regarding enteric redmouth disease and Y. ruckeri: diagnosis, genome, virulence factors, interaction with the host immune responses, and the development of vaccines against this pathogen.
Project description:Yersinia ruckeri is the causative agent of enteric redmouth disease (ERM) of salmonids. There is little information regarding the proteomics of Y. ruckeri. Herein, we perform whole protein identification and quantification of biotype 1 and biotype 2 strains of Y. ruckeri grown under standard culture conditions using a shotgun proteomic approach. Proteins were extracted, digested and peptides were separated by a nano liquid chromatography system and analyzed with a high-resolution hybrid triple quadrupole time of flight mass spectrometer coupled via a nano ESI interface. SWATH-MS technology and sophisticated statistical analyses were used to identify proteome differences among virulent and avirulent strains. GO annotation, subcellular localization, virulence proteins and antibiotic resistance ontology were predicted using bioinformatic tools. A total of 1395 proteins were identified in the whole cell of Y. ruckeri. These included proteases, chaperones, cell division proteins, outer membrane proteins, lipoproteins, receptors, ion binding proteins, transporters and catalytic proteins. In virulent strains, a total of 16 proteins were upregulated including anti-sigma regulatory factor, arginine deiminase, phosphate-binding protein PstS and superoxide dismutase Cu-Zu. Additionally, several virulence proteins were predicted such as Clp and Lon pro-teases, TolB, PPIases, PstS, PhoP and LuxR family transcriptional regulators. These putative virulence proteins might be used for development of novel targets for treatment of ERM in fish. Our study represents one of the first global proteomic reference profiles of Y. ruckeri and this data can be accessed via ProteomeXchange with identifier PXD005439. These proteomic profiles elucidate proteomic mechanisms, pathogenicity, host-interactions, antibiotic resistance ontology and localization of Y. ruckeri proteins.
Project description:A multiplex PCR assay based on the 16S rRNA genes was developed for the simultaneous detection of three major fish pathogens, Aeromonas salmonicida, Flavobacterium psychrophilum, and Yersinia ruckeri. The assay proved to be specific and as sensitive as each single PCR assay, with detection limits in the range of 6, 0.6, and 27 CFU for A. salmonicida, F. psychrophilum, and Y. ruckeri, respectively. The assay was useful for the detection of the bacteria in artificially infected fish as well as in fish farm outbreaks. Results revealed that this multiplex PCR system permits a specific, sensitive, reproducible, and rapid method for the routine laboratory diagnosis of infections produced by these three bacteria.
Project description:Yersinia ruckeri is a facultative intracellular enterobacterium mostly known as the causative agent of enteric redmouth disease in salmonid fish. In the present study, we applied RNA inhibition to silence twenty pre-selected genes on the genome of a fish cell line (CHSE-214) followed by a gentamicin assay to quantify the effect of silencing on the cells' susceptibility to infection and found that silencing of 18 out of 20 genes significantly reduced the number of Y. ruckeri recovered. These findings improve our understanding of the infection process by Y. ruckeri and of the interactions between this bacterial pathogen and host cells.