Project description:BackgroundNotoginsenoside Ft1 is a promising potential candidate for cardiovascular and cancer disease therapy owing to its positive pharmacological activities. However, the yield of Ft1 is ultralow utilizing reported methods. Herein, an acid hydrolyzing strategy was implemented in the acquirement of rare notoginsenoside Ft1.MethodsChemical profiles were identified by ultraperformance liquid chromatography coupled with quadruple-time-of-flight and electrospray ionization mass spectrometry (UPLC-Q/TOF-ESI-MS). The acid hydrolyzing dynamic changes of chemical compositions and the possible transformation pathways of saponins were monitored by ultrahigh-performance LC coupled with tandem MS (UHPLC-MS/MS).Results and conclusionNotoginsenoside Ft1 was epimerized from notoginsenoside ST4, which was generated through cleaving the carbohydrate side chains at C-20 of notoginsenosides Fa and Fc, and vina-ginsenoside R7, and further converted to other compounds via hydroxylation at C-25 or hydrolysis of the carbohydrate side chains at C-3 under the acid conditions. High temperature contributed to the hydroxylation reaction at C-25 and 25% acetic acid concentration was conducive to the preparation of notoginsenoside Ft1. C-20 epimers of notoginsenoside Ft1 and ST4 were successfully separated utilizing solvent method of acetic acid solution. The theoretical preparation yield rate of notoginsenoside Ft1 was about 1.8%, which would be beneficial to further study on its bioactivities and clinical application.
Project description:IntroductionRadix Notoginseng, one of the most famous Chinese traditional medicines, is the dried root of Panax notoginseng (Araliaceae). Stems and leaves of P. notoginseng (SLPN) are rich in secondary metabolites and nutrients, and authorized as a food resource, however, its utilization needs further research.MethodsA SLPN-instant beverage was manufactured from SLPN through optimization by response surface design with 21-fold of 48.50% ethanol for 39 h, and this extraction was repeated twice; the extraction solution was concentrated to 1/3 volume using a vacuum rotatory evaporator at 45°C, and then spray dried at 110°C. Nutritional components including 14 amino acids, ten mineral elements, 15 vitamins were detected in the SLPN-instant beverage; forty-three triterpenoid saponins, e.g., ginsenoside La, ginsenoside Rb3, notoginsenoside R1, and two flavonoid glycosides, as well as dencichine were identified by UPLC-MS.ResultsThe extraction rate of SLPN-instant beverage was 37.89 ± 0.02%. The majority nutrients were Gly (2.10 ± 0.63 mg/g), His (1.23 ± 0.07 mg/g), α-VE (18.89 ± 1.87 μg/g), β-VE (17.53 ± 1.98 μg/g), potassium (49.26 ± 2.70 mg/g), calcium (6.73 ± 0.27 mg/g). The total saponin of the SLPN-instant beverage was 403.05 ± 34.98 mg/g, majority was notoginsenoside Fd and with contents of 227 ± 2.02 mg/g. In addition, catechin and γ-aminobutyric acid were detected with levels of 24.57 ± 0.21 mg/g and 7.50 ± 1.85 mg/g, respectively. The SLPN-instant beverage showed good antioxidant activities with half maximal inhibitory concentration (IC50) for scavenging hydroxyl (OH-) radicals, superoxide anion (O2-) radicals, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS+) radicals were 0.1954, 0.2314, 0.4083, and 0.3874 mg/mL, respectively.ConclusionWe optimized an analytical method for in depth analysis of the newly authorized food resource SLPN. Together, an instant beverage with antioxidant activity, rich in nutrients and secondary metabolites, was manufactured from SLPN, which may improve the utilization of SLPN.
Project description:Four new dammarane-type triterpenoid saponins, namely notoginsenosides SFt1-SFt4 (1–4) were isolated from the steamed leaves of Panax notoginseng (Burk.) F. H. Chen (Araliaceae), together with 17 known saponins. Their structures were established on the basis of detailed spectroscopic analyses and acidic hydrolysis. The known ginsenosides Rk2 and Rh3 were obtained from P. notoginseng for the first time. All of these new saponins showed no in vitro cytotoxicity against five human cancer cell lines (HL-60, SMMC-7712, A-549, MCF-7, and SW480). Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s13659-011-0036-2 and is accessible for authorized users.
Project description:Panax notoginseng (Burk.) F. H. is a genuine medicinal material in Yunnan Province. As accessories, P. notoginseng leaves mainly contain protopanaxadiol saponins. The preliminary findings have indicated that P. notoginseng leaves contribute to its significant pharmacological effects and have been administrated to tranquilize and treat cancer and nerve injury. Saponins from P. notoginseng leaves were isolated and purified by different chromatographic methods, and the structures of 1-22 were elucidated mainly through comprehensive analyses of spectroscopic data. Moreover, the SH-SY5Y cells protection bioactivities of all isolated compounds were tested by establishing L-glutamate models for nerve cell injury. As a result, twenty-two saponins, including eight dammarane saponins, namely notoginsenosides SL1-SL8 (1-8), were identified as new compounds, together with fourteen known compounds, namely notoginsenoside NL-A3 (9), ginsenoside Rc (10), gypenoside IX (11), gypenoside XVII (12), notoginsenoside Fc (13), quinquenoside L3 (14), notoginsenoside NL-B1 (15), notoginsenoside NL-C2 (16), notoginsenoside NL-H2 (17), notoginsenoside NL-H1 (18), vina-ginsenoside R13 (19), ginsenoside II (20), majoroside F4 (21), and notoginsenoside LK4 (22). Among them, notoginsenoside SL1 (1), notoginsenoside SL3 (3), notoginsenoside NL-A3 (9), and ginsenoside Rc (10) showed slight protective effects against L-glutamate-induced nerve cell injury (30 µM).
Project description:BackgroundPanax notoginseng is an important herbal medicine in China, where this crop is cultivated by replanting of seedlings. Root rot disease threatens the sustainability of P. notoginseng cultivation. Water flooding (WF) is widely used to control numerous soilborne diseases, and biogas slurry shows positive effects on the soil physiochemical properties and microbial community structure and has the potential to suppress soilborne pathogens. Hence, biogas slurry flooding (BSF) may be an effective approach for alleviating root rot disease of P. notoginseng; however, the underlying mechanism needs to be elucidated.MethodsIn this study, we conducted a microcosm experiment to determine if BSF can reduce the abundance of pathogens in soil and, alleviate root rot of P. notoginseng. Microcosms, containing soil collected from a patch of P. notoginseng showing symptoms of root rot disease, were subjected to WF or BSF at two concentrations for two durations (15 and 30 days), after which the changes in their physicochemical properties were investigated. Culturable microorganisms and the root rot ratio were also estimated. We next compared changes in the microbial community structure of soils under BSF with changes in WF and untreated soils through high-throughput sequencing of bacterial 16S rRNA (16S) and fungal internal transcribed spacer (ITS) genes amplicon.ResultsWF treatment did not obviously change the soil microbiota. In contrast, BSF treatment significantly altered the physicochemical properties and reshaped the bacterial and fungal communities, reduced the relative abundance of potential fungal pathogens (Fusarium, Cylindrocarpon, Alternaria, and Phoma), and suppressed culturable fungi and Fusarium. The changes in the microbial community structure corresponded to decreased root rot ratios. The mechanisms of fungal pathogen suppression by BSF involved several factors, including inducing anaerobic/conductive conditions, altering the soil physicochemical properties, enriching the anaerobic and culturable bacteria, and increasing the phylogenetic relatedness of the bacterial community.ConclusionsBSF application can reshape the soil microbial community, reduce the abundance of potential pathogens, and alleviate root rot in P. notoginseng. Thus, it is a promising practice for controlling root rot disease in P. notoginseng.
Project description:Two new 12,23-epoxydammarane-type saponins, notoginsenosides NL-I (1) and NL-J (2), were isolated and identified from Panax notoginseng leaves through the combination of various chromatographies and extensive spectroscopic methods, as well as chemical reactions. Among them, notoginsenoside NL-J (2) had a new skeleton. Furthermore, the lipopolysaccharide (LPS)-induced RAW 264.7 macrophage model was used to identify the in vitro anti-inflammatory activity and mechanisms of compounds 1 and 2. Both of them exerted strong inhibition on nitric oxide (NO) productions in a concentration-dependent manner at 1, 10, and 25 μM. Moreover, these two compounds significantly decreased the secretion of tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), cyclooxygenase-2 (COX-2), nuclear factor kappa-B (NF-κB/p65), and nitric-oxide synthase (iNOS) in LPS-activated RAW 264.7 cells.
Project description:Panax notoginseng (Burk.) F. H. Chen is a Chinese medicinal plant of the Araliaceae family used for the treatment of cardiovascular and cerebrovascular diseases in Asia. P. notoginseng is vulnerable to root rot disease, which reduces the yield of P. notoginseng. In this study, we analyzed the rhizosphere soil and root endophyte microbial communities of P. notoginseng from different geographical locations using high-throughput sequencing. Our results revealed that the P. notoginseng rhizosphere soil microbial community was more diverse than the root endophyte community. Rhodopseudomonas, Actinoplanes, Burkholderia, and Variovorax paradoxus can help P. notoginseng resist the invasion of root rot disease. Ilyonectria mors-panacis, Pseudomonas fluorescens, and Pseudopyrenochaeta lycopersici are pathogenic bacteria of P. notoginseng. The upregulation of amino acid transport and metabolism in the soil would help to resist pathogens and improve the resistance of P. notoginseng. The ABC transporter and gene modulating resistance genes can improve the disease resistance of P. notoginseng, and the increase in the number of GTs (glycosyltransferases) and GHs (glycoside hydrolases) families may be a molecular manifestation of P. notoginseng root rot. In addition, the complete genomes of two Flavobacteriaceae species and one Bacteroides species were obtained. This study demonstrated the microbial and functional diversity in the rhizosphere and root microbial community of P. notoginseng and provided useful information for a better understanding of the microbial community in P. notoginseng root rot. Our results provide insights into the molecular mechanism underlying P. notoginseng root rot and other plant rhizosphere microbial communities.
Project description:The high background value of cadmium (Cd) in the Panax notoginseng planting soil is the main reason for the Cd content in P. notoginseng exceeding the limit standards. The main goal of this study was to reveal the mechanism by which potassium (K) reduces Cd accumulation in P. notoginseng from the perspective of the influences of soil microbial communities on soil pH, total organic matter (TOM) and cation exchange capacity (CEC). Pot experiments were conducted to study the effects of different types and amounts of applied K on the Cd content in P. notoginseng, and on the soil pH, TOM, CEC, and bioavailable Cd (bio-Cd) content in soil. Field experiments were conducted to study the effects of K2SO4 fertilizer on the microbial community, and its correlations with the soil pH, TOM and CEC were analyzed. A moderate application of K2SO4 (0.6 g⋅kg-1) was found to be the most optimal treatment for the reduction of Cd in the pot experiments. The field experiments proved that K fertilizer (K2SO4) alleviated the decreases in pH, TOM and CEC, and reduced the content of bio-Cd in the soil. The application of K fertilizer inhibited the growth of Acidobacteria, but the abundances of Mortierellomycota, Proteobacteria and Bacteroidetes were promoted. The relative abundances of Acidobacteria and Proteobacteria in the soil bacteria exhibited significant negative and positive correlations with pH and CEC, respectively. In contrast, the relative abundance of Mortierellomycota was found to be positively correlated with the pH, TOM and CEC. The bio-Cd content was also found to be positively correlated with the relative abundance of Acidobacteriia but negatively correlated with the relative abundances of Proteobacteria and Mortierellomycota. The application of K fertilizer inhibited the abundance of Acidobacteria, which alleviated the acidification of the soil pH and CEC, and promoted increase in the abundances of Mortierellomycota, Proteobacteria and Bacteroidetes, which ultimately increased the soil TOM and CEC. Soil microorganisms were found to mitigated decreases in the soil pH, TOM, and CEC and reduced the bio-Cd content in the soil, which significantly reduced the accumulation of Cd in P. notoginseng.
Project description:Inflammation is a very common and important pathological process that can cause many diseases. The discovery of anti-inflammatory drugs and the treatment of inflammation are particularly essential. Dammarane-type triterpenoid saponins (PNS) were demonstrated to show anti-inflammatory effects in the leaves of Panax notoginseng. Chromatographies and spectral analysis methods were combined to isolate and identify PNS. Moreover, the nitric oxide (NO) inhibitory activities of all compounds were examined in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. As a result, eleven new dammarane-type triterpenoid saponins, notoginsenosides NL-A1-NL-A4 (1-4), NL-B1-NL-B3 (5-7), NL-C1-NL-C3 (8-10), and NL-D (11) were isolated, and their structures were identified by using various spectrometric techniques and chemical reactions. Among them, compounds 4 and 11 were characterized by the malonyl substitution at 3-position. The 3-malonyl substituted dammarane-type terpennoids were first obtained from natural products. In addition, compounds 1, 2, 5, 6, and 8-10 were found to play an important role in suppressing NO levels at 50 μM, without cytotoxicity. All inhibitory activities were found to be dose-dependent.
Project description:Recent results demonstrated that either non-coding or coding genes generate phased secondary small interfering RNAs (phasiRNAs) guided by specific miRNAs. Till now, there is no studies for phasiRNAs in Panax notoginseng (Burk.) F.H. Chen (P. notoginseng), an important traditional Chinese herbal medicinal plant species. Here we performed a genome-wide discovery of phasiRNAs and its host PHAS loci in P. notoginseng by analyzing small RNA sequencing profiles. Degradome sequencing profile was used to identify the trigger miRNAs of these phasiRNAs and potential targets of phasiRNAs. We also used RLM 5'-RACE to validate some of the identified phasiRNA targets. After analyzing 24 small RNA sequencing profiles of P. notoginseng, 204 and 90 PHAS loci that encoded 21 and 24 nucleotide (nt) phasiRNAs were identified. Furthermore, we found that phasiRNAs produced from some pentatricopeptide repeat-contain (PPR) genes target another layer of PPR genes as validated by both the degradome sequencing profile and RLM 5'-RACE analysis. We also find that miR171 with 21 nt triggers the 21 nt phasiRNAs from its conserved targets. We validated that some phasiRNAs generated from PPRs are functional by targeting other PPRs in trans. These results provide the first set of PHAS loci and phasiRNAs in P. notoginseng, and enhance our understanding of PHAS in plants.